Abstract:
An organic release agent is vacuum deposited over a substrate and surface treated with a plasma or ion-beam source in a gas rich in oxygen-based functional groups to harden a very thin layer of the surface of the deposited layer in a passivating environment. Aluminum is subsequently vacuum deposited onto the hardened release layer to form a very flat and specular thin film. The film is exposed to a plasma gas containing oxygen or nitrogen to passivate its surface. The resulting product is separated from the substrate, crushed to brake up the film into aluminum flakes, and mixed in a solvent to separate the still extractable release layer from the aluminum flakes. The surface treatment of the release layer greatly reduces wrinkles in the flakes, improving the optical chracteristics of the flakes. The passivation of the flake material virtually eliminates subsequent corrosion from exposure to moisture.
Abstract:
A composite multi-layer barrier is produced by first vapor depositing a barrier under vacuum over a substrate of interest and then depositing an additional barrier at atmospheric pressure in a preferably thermoplastic layer. The resulting multi-layer barrier is then used to coat an article of interest in a lamination process wherein the thermoplastic layer is fused onto itself and the surface of the article. The vacuum-deposited barrier may consists of a first leveling polymer layer followed by an inorganic barrier material sputtered over the leveling layer and of an additional polymeric layer flash evaporated, deposited, and cured under vacuum. The thermoplastic polymeric layer is then deposited by extrusion, drawdown or roll coating at atmospheric pressure. The resulting multi-layer barrier may be stacked using the thermoplastic layer as bonding agent. Nano-particles may be included in the thermoplastic layer to improve the barrier properties of the structure. A desiccant material may also be included or added as a separate layer.
Abstract:
A monomer is selected to produce a polymeric film having desirable characteristics for a particular application. The monomer is ppolymerized under controlled conditions to produce a solid oligomer having those characteristics at a molecular weight suitable for evaporation under vacuum at a temperature lower than its thermal decomposition temperature. The process of polymerization to produce the oligomer is carried out under conditions that yield a finite molecular-chain length with no residual reactive groups. The solid oligomer so produced is extruded as a film onto a revolving drum (38) in the evaporation section (40) of a vapor deposition chamber, and then cryocondensed on a cold substrate (44) to form a solid film having the same characteristic selected in the solid oligomer constituting the starting material. As a result of the initial complete reaction to produce the oligomer, the thin-film product does not contain unreacted groups and all attendant disadvantages are avoided.
Abstract:
A porous metallic layer is incorporated in one of the electrodes of a plasma treatment system. A plasma gas is injected into the electrode at substantially atmospheric pressure and allowed to diffuse through the porous layer, thereby forming a uniform glow-discharge plasma. The film material to be treated is exposed to the plasma created between this electrode and a second electrode covered by a dielectric layer. Because of the micron size of the pores of the porous metal, each pore also produces a hollow cathode effect that facilitates the ionization of the plasma gas. As a result, a steady-state glow-discharge plasma is produced at atmospheric pressure and at power frequencies as low as 60 Hz. According to another aspect of the invention, vapor deposition is carried out in combination with plasma treatment by vaporizing a substance of interest, mixing it with the plasma gas, and diffusing the mixture through the porous electrode. A heater is used to maintain the temperature of the electrode above the condensation temperature of the substance to prevent deposition during diffusion. Thus, plasma treatment and vapor deposition can be carried out on a target substrate at the same time at atmospheric pressure.
Abstract:
A hybrid film, comprising a first polymer film having a plasma-treated surface and a second polymer film having first and second surfaces, with the first surface of the second polymer film being disposed along the first plasma-treated surface of the first polymer film, has superior thermal and mechanical properties that improve performance in a number of applications, including food packaging, thin film metallized and foil capacitors, metal evaporated magnetic tapes, flexible electrical cables, and decorative and optically variable films. One or more metal layers may be deposited on either the plasma-treated surface of the substrate and/or the radiation-cured acrylate polymer A ceramic layer may be deposited on the radiation-cured acrylate polymer to provide an oxygen and moisture barrier film. The hybrid film is produced using a high speed, vacuum polymer deposition process that is capable of forming thin, uniform, high temperature, cross-liked acrylate polymers on specific thermoplastic or thermoset films. Radiation curing is employed to cross-link the acrylate monomer. The hybrid film can be produced in-line with the metallization or ceramic coating process, in the same vacuum chamber and with minimal additional cost.
Abstract:
A method of improving the breakdown strength of polymer multi-layer (PML) capacitors is provided and of providing a window in food packaging is provided. The method comprises patterning the aluminum coating, either by selective removal of deposited aluminum or by preventing deposition of the aluminum on selected areas of the underlying polymer film. Apparatus is also provided for patterning metal deposition on polymer films comprising masking for defining regions in which metal is deposited. The apparatus comprises: (a) a rotating drum; (b) a monomer evaporator for depositing a monomer film on the rotating drum; (c) a radiation curing element for curing the monomer film to form a cross-linked polymer film; and (d) a resistive evaporator for depositing a metal film on the cross-linked polymer film. The foregoing elements are enclosed in a vacuum chamber. The masking comprising one of the following: (e1) a web mask provided with openings for depositing the metal film therethrough, the web mask including a portion adapted for positioning between the resistive evaporator for depositing the metal film on the cross-linked polymer film and the rotating drum; or (e2) a rotating element for transferring liquid from a source to the rotating drum, the rotating element adapted to transfer the liquid to the rotating drum after the monomer evaporator for depositing the polymer film and before the resistive evaporator for depositing the metal film.
Abstract:
Apparatus and process for plasma treatment of moving webs, or films, are disclosed. The apparatus includes magnets and multiple hollow cathodes, which, in the presence of a plasma, magnetically focuses and thereby intensifies the plasma to one side of the film surface. The moving web is positioned either between the hollow cathodes and the magnets or in front of the hollow cathodes and the magnets. The plasma treatment functionalizes the film surface.
Abstract:
A high energy density, high power density capacitor having an energy density of at least about 0.5 J/cm.sup.3 is provided. The capacitor comprises a plurality of interleaved metal electrode layers separated by a polymer layer. The interleaved metal electrode layers terminate at opposite ends in a solder termination strip. The high energy density aspect of the capacitors of the invention is achieved by at least one of the following features: (a) the dielectric thickness between the interleaved metal electrode layers is a maximum of about 5 .mu.m; (b) the polymer is designed with a high dielectric constant .kappa. of at least about 3.5; (c) the metal electrode layers within the polymer layer are recessed along edges orthogonal to the solder termination strips to prevent arcing between the metal electrode layers at the edges; and (d) the resistivity of the metal electrode layers is within the range of about 10 to 500 ohms per square, or a corresponding thickness of about 200 to 30 .ANG..
Abstract:
A high speed apparatus for forming capacitors includes a vacuum chamber in which is located a carrier defining a continuous surface configured to move at a rate of from about 150 feet per minute to about 600 feet per minute during the forming operation, a metal depositing device, a dielectric depositing device, and a radiation source. The metal depositing device is configured to deposit layers of metal onto the moving surface, and the dielectric depositing device includes (a) a device for atomizing a radiation-curable polyfunctional acrylic monomer to form liquid droplets of the monomer, (b) a heated surface on which the atomized monomer droplets impinge and are flash vaporized, and (c) device for thereafter condensing the flash-vaporized monomer on the metal layers to form a monomer coating on successive layers. The radiation source is positioned for curing successive monomer coatings after each such coating has been deposited, to thereby form a polymer dielectric layer. Apparatus are provided for controlling each of the devices so that metal is deposited, a monomer coating is deposited, and the monomer coating is cured to form the polymer dielectric layer before the continuous surface passes the devices again for successive metal layers, monomer coatings, and curings.
Abstract:
A monolithic multi-layer capacitor is disclosed having a central capacitively active area and two electrode joining sections separated from the active area by sloped sections. The dielectric layers are about 1 micron thick in the active area and taper gradually to zero thickness in the sloped sections. Electrode layers in the active area have a thickness in the range from 200 to 500 Angstroms and sufficient thickness throughout the sloped sections for adequate current carrying capacity. Various acrylates are used for the dielectric layers, the number of layers ranging from a few to many thousands.Apparatus and methods are disclosed for the fabrication of such capacitors on a high speed, production scale basis. Such employ techniques for the flash evaporation of highly reactive monomers of acrylate dielectric materials so as to form a gaseous stream of such materials. The gas stream is controllably directed to a deposition surface for condensation and subsequent curing by a field enhanced gas discharge electron beam source. The control of the dielectric gas stream is accomplished by means of adjacent gas streams of an inert gas directed to areas of the deposition surface where deposition of the electrode material is unwanted. Means are disclosed for the atomization of the monomers of the dielectric material in preparation for its flash evaporation.