Abstract:
Various systems and method for distributing electrical power are provided. In one embodiment, a system includes a first inverter coupled to an electrical bus, a second inverter coupled to the electrical bus, a filter including a first inductor and a second inductor, and a transfer switch circuit coupled between the first inverter and the second inverter and a load. The transfer switch circuit is configured to transfer power from the first inverter through the first inductor to the load and transfer power from the second inverter through the second inductor to the load in a first mode of operation. The transfer switch circuit is further configured to transfer power from the first inverter through the first inductor and through the second inductor to the load in a second mode of operation.
Abstract:
A method includes determining an operational parameter of a first vehicle traveling with a plurality of vehicles in a transportation network and/or a route in the transportation network, identifying a failure condition of the first vehicle and/or the route based on the operational parameter, obtaining plural different sets of remedial actions that dictate operations to be taken based on the operational parameter, simulating travel of the plurality of vehicles in the transportation network based on implementation of the different sets of remedial actions, determining potential consequences on travel of the plurality of vehicles in the transportation network when the different sets of remedial actions are implemented in the travel that is simulated, and based on the potential consequences, receiving a selection of at least one of the different sets of remedial actions to be implemented in actual travel of the plurality of vehicles in the transportation network.
Abstract:
A system for the communication of data used in the operation of a vehicle comprises a plurality of controllers onboard the powered vehicle for controlling operations of the vehicle. At least one of the controllers has a memory in which data is stored and the data is accessible and used by at least two of the controllers for controlling vehicle operations. A communication link is provided between the at least two controllers for sharing data stored in the memory of one of the controllers to control operations of the powered vehicle.
Abstract:
A method (e.g., for monitoring a braking system of a vehicle system) includes monitoring fluid pressures of a braking system and modeled braking efforts of the braking system in a vehicle system traveling along a route, identifying one or more time periods at least one of before a brake event of the braking system or after the brake event, calculating residual forces exerted on the vehicle system during the one or more time periods, and determining at least one of an estimated braking effort of the braking system or an estimated propagation rate at which the estimated braking effort is applied by the braking system using the residual forces that are calculated.
Abstract:
A method including obtaining creep measurements and tractive/braking measurements from at least one vehicle system at different locations along a route segment while the at least one vehicle system moves through the route segment. The method also includes calculating tribology characteristics of the route segment at the different locations. The tribology characteristics are based on the creep measurements and the tractive/braking measurements from the at least one vehicle system. The tribology characteristics are indicative of a friction coefficient of the route segment at the different locations. The method also includes determining an effectiveness of a friction modifier applied to the route segment based on the tribology characteristics.
Abstract:
A power distribution system for a rail vehicle includes a propulsion alternator, a first bus, a Head End Power (HEP) alternator, and a second bus. The propulsion alternator is joined to an engine of the rail vehicle. The first bus is joined with the propulsion alternator and is configured to electrically couple the propulsion alternator with a propulsion electric load that propels the rail vehicle. The HEP alternator is joined to the engine. The second bus is joined with the HEP alternator and is adapted to electrically couple the HEP alternator with a non-propulsion electric load of the rail vehicle. The propulsion alternator generates a first electric current to power the propulsion electric load and the HEP alternator separately generates second electric current to power the non-propulsion electric load. The HEP alternator and the second bus are electrically separate from the propulsion alternator and the first bus.
Abstract:
A system is provided that includes a remote communication module, a control module, and a determination module. The remote communication module is configured to be disposed onboard a remote consist of a vehicle system, and is communicatively connected to at least one additional consist of the vehicle system. The control module is configured to be disposed onboard the remote consist and to provide control commands to at least one powered unit of the remote consist. The determination module is configured to be disposed onboard the remote consist and to determine capability information corresponding to the ability of the at least one powered unit of the remote consist to perform a first command received from one of the at least one additional consist. The determination module is also configured to determine a second command provided to the control module using the first command and the capability information.
Abstract:
A route examining system includes first and second application devices, a control unit, first and second detection units, and an identification unit. The first and second application devices are disposed onboard a vehicle traveling along a route having conductive tracks. The control unit controls injection of a first examination signal into the conductive tracks via the first application device and injection of a second examination signal into the conductive tracks via the second application device. The first and second detection units monitor electrical characteristics of the route in response to the first and second examination signals being injected into the conductive tracks. The identification unit examines the electrical characteristics of the conductive tracks in order to determine whether a section of the route is potentially damaged based on the electrical characteristics.
Abstract:
A system is provided for operating a railway network including a first railway vehicle during a trip along track segments. The system includes a first element for determining travel parameters of the first railway vehicle, a second element for determining travel parameters of a second railway vehicle relative to the track segments to be traversed by the first vehicle during the trip, a processor for receiving information from the first and the second elements and for determining a relationship between occupation of a track segment by the second vehicle and later occupation of the same track segment by the first vehicle and an algorithm embodied within the processor having access to the information to create a trip plan that determines a speed trajectory for the first vehicle. The speed trajectory is responsive to the relationship and further in accordance with one or more operational criteria for the first vehicle.
Abstract:
A power system is disclosed. The power system includes a first power generating unit. The first power generating unit includes a first power converting subunit and a first control unit coupled to the first power converting subunit, where the first control unit is configured to regulate a voltage of the first power generating unit. The power system further includes a second power generating unit coupled to the first power generating unit and a load, where the second power generating unit includes a second power converting subunit and a second control unit coupled to the second power converting subunit, wherein the second control unit is configured to control a current of the second power generating unit to share a quantity of electrical output current flowing through the load among the first and second power generating units.