Abstract:
An electrical system for a vehicle which can be electrically driven includes a high-voltage DC system and a low-voltage DC system. A DC/DC converter is, or can be, electrically connected to the high-voltage DC system at one end and to the low-voltage DC system at the other end. An AC line passage is, or can be, electrically connected to a first DC/AC converter. The first DC/AC converter is, or can be, electrically connected to the high-voltage DC system at one end and to an AC drive device of the vehicle by way of the AC line passage at the other end. There is also included a DC energy source, in particular a fuel cell device for example. A second DC/AC converter is, or can be, electrically connected to the DC energy source at one end and to the AC line passage at the other end.
Abstract:
A method and system are provided for variably adjusted voltage of the LDC applied with an IBS (Intelligent Battery Sensor). The LDC output voltage control mode is determined in each of three driving modes, and the high electric loads are separated into two or more groups. The LDC output voltage value and the order priority are differentiated based on the durability of the auxiliary battery. Additionally, an LDC output voltage order table is generated according to the driving mode and the SOC state based on the auxiliary battery SOC information obtained from an IBS. Thus, consumed energy of the LDC and an energy consumption amount of the auxiliary battery are minimized, thus improving fuel efficiency.
Abstract:
Various systems and method for distributing electrical power are provided. In one embodiment, a system includes a first inverter coupled to an electrical bus, a second inverter coupled to the electrical bus, a filter including a first inductor and a second inductor, and a transfer switch circuit coupled between the first inverter and the second inverter and a load. The transfer switch circuit is configured to transfer power from the first inverter through the first inductor to the load and transfer power from the second inverter through the second inductor to the load in a first mode of operation. The transfer switch circuit is further configured to transfer power from the first inverter through the first inductor and through the second inductor to the load in a second mode of operation.
Abstract:
The invention relates to a converter circuit (50) for transferring electrical energy, in particular for application in a motor vehicle wiring system (38, 42), which converter circuit comprises an electromagnetic transfer unit (60) having three electromagnetic transfer members (62, 64, 66) that can be electromagnetically coupled to each other in order to transfer electromagnetic energy, wherein the first electromagnetic transfer member (62) is connected to a first bi-directional converter circuit that comprises a first voltage connection pole pair (80) for connecting an AC voltage source and/or sink (54), wherein the second electromagnetic transfer member (64) is connected to a rectifier converter circuit that is connected on the outlet side to an electrical energy store (88), and wherein the third electromagnetic transfer member (66) is connected to a second bi-directional converter circuit that comprises a second voltage pole pair (96) for connecting a DC voltage source and/or sink (98), and a control unit (100) that is connected to the first bi-directional converter circuit, the second bi-directional converter circuit and the rectifier converter circuit, in order to control the exchange of electrical energy between the AC voltage source and/or sink (54), the DC voltage source and/or sink (98) and/or the electrical energy store (88).
Abstract:
An electric drive-train for a ship includes a first generator having a rotatable shaft structured to be driven by a first prime mover and an output providing a voltage; a second generator having a rotatable shaft structured to be driven by a second prime mover and an output providing a voltage; an electric machine including a rotatable shaft structured to drive a propeller; a first power electronic converter electrically interconnected with the output of the first generator and structured to power the electric machine; and a second power electronic converter electrically interconnected with the output of the second generator and structured to power the electric machine. A support structure replaces a reduction gear box and supports the first generator, the second generator, the electric machine, the first power electronic converter, and the second power electronic converter.
Abstract:
A drive system, mountable onto a vehicle including a detachable rotational drive mechanism, for driving the rotational drive mechanism in accordance with a torque requirement. The drive system includes an engine that outputs first rotational power, and a generator that includes a rotor for receiving the first rotational power, a stator including a stator core with a winding wound thereon, a magnetic circuit for the winding passing through the stator core, and a supply current adjustment device for adjusting magnetic resistance of the magnetic circuit for the winding, to thereby change an inductance of the winding to adjust an output current of the generator. The drive system further includes a motor driven by the outputted current of the generator to output second rotational power to the rotational drive mechanism, and a control device configured to control both the engine and the supply current adjustment device, in accordance with the torque requirement.
Abstract:
An electric drive system comprises a generator, a traction motor, a brake resistor, a bus, and a control unit. The generator, the traction motor, and the brake resistor are coupled electrically to the bus. The control unit is configured to determine a pulse-width-modulation duty cycle for the brake resistor (“brake duty”) and control operation of the brake resistor according to the brake duty, wherein the brake duty can be a value intermediate of constant OFF and constant ON. A method of operating the electric drive system is also disclosed.
Abstract:
A system for estimating a rotor position may include a synchronous machine, including at least one stator winding pair configured to create a magnetic field when an input voltage is applied and a rotor having a field winding and configured to rotate within the magnetic field created by the at least one stator winding pair. The system may include a phase detector configured to determine a phase difference between the input voltage and a field voltage induced in the field winding of the rotor. The system may also include a processor configured to receive a signal from the phase detector indicative of the phase difference between the input voltage and the field voltage, and to estimate the rotor position based on the phase difference.
Abstract:
A high-altitude railroad locomotive adapted for more reliable operation at high altitudes, wherein the high-altitude railroad locomotive includes a semiconductor electric power control component, and wherein due to the high altitude the locomotive would be exposed to high levels of cosmic radiation tending to damage the semiconductor electric power control component is provided. The high-altitude locomotive includes electric power generation equipment, a plurality of traction motors mechanically connected to wheels supporting the high altitude locomotive and an electric power transmission system for transmitting electrical power from the electric power generation equipment to the plurality of traction motors. A DC bus is also included and electrically connected to the traction motors and a power controller for controlling the transmission of power over the DC bus, the traction motors having a second active motor volume, wherein the second active motor volume is larger than the first active motor volume to enable the DC bus voltage of the high-altitude locomotive to be reduced relative to the first DC bus voltage while generating a range of mechanical power sufficient to propel the locomotive at high altitudes, whereby the combined effects on the semiconductor electric power control component caused by the DC bus voltage of the high-altitude locomotive and by the cosmic radiation correspond to these effects on the semiconductor electric power control components of the low-altitude locomotive when operating at low altitudes to reduce the likelihood of failure of the semiconductor electric power control component of the high-altitude locomotive.
Abstract:
A high-altitude railroad locomotive adapted for more reliable operation at high altitudes, wherein the high-altitude railroad locomotive includes a semiconductor electric power control component, and wherein due to the high altitude the locomotive would be exposed to high levels of cosmic radiation tending to damage the semiconductor electric power control component is provided. The high-altitude locomotive includes electric power generation equipment, a plurality of traction motors mechanically connected to wheels supporting the high altitude locomotive and an electric power transmission system for transmitting electrical power from the electric power generation equipment to the plurality of traction motors. A DC bus is also included and electrically connected to the traction motors and a power controller for controlling the transmission of power over the DC bus, the traction motors having a second active motor volume, wherein the second active motor volume is larger than the first active motor volume to enable the DC bus voltage of the high-altitude locomotive to be reduced relative to the first DC bus voltage while generating a range of mechanical power sufficient to propel the locomotive at high altitudes, whereby the combined effects on the semiconductor electric power control component caused by the DC bus voltage of the high-altitude locomotive and by the cosmic radiation correspond to these effects on the semiconductor electric power control components of the low-altitude locomotive when operating at low altitudes to reduce the likelihood of failure of the semiconductor electric power control component of the high-altitude locomotive.