摘要:
In a metal gate replacement process, a stack of at least two polysilicon layers or other materials may be formed. Sidewall spacers may be formed on the stack. The stack may then be planarized. Next, the upper layer of the stack may be selectively removed. Then, the exposed portions of the sidewall spacers may be selectively removed. Finally, the lower portion of the stack may be removed to form a T-shaped trench which may be filled with the metal replacement.
摘要:
Increasing the number of successive pulses of oxidant before applying pulses of metal precursor may improve the quality of the resulting metal or rare earth oxide films. These metal or rare earth oxide films may be utilized for high dielectric constant gate dielectrics. In addition, pulsing the oxidant during the pre-stabilization period may be advantageous. Also, using more pulses of oxidant than the pulses of precursor may reduce chlorine concentration in the resulting films.
摘要:
A metal gate transistor may include a metal layer over a high dielectric constant dielectric layer. The dielectric layer abstracts electronegativity from said metal layer, altering its workfunction. The workfunction of the metal layer may be set to compensate for the dielectric layer abstraction.
摘要:
A method for making a semiconductor device is described. That method comprises forming a dielectric layer on a substrate, forming a trench within the dielectric layer, and forming a high-k gate dielectric layer within the trench. After forming a first metal layer on the high-k gate dielectric layer, a second metal layer is formed on the first metal layer. At least part of the second metal layer is removed from above the dielectric layer using a polishing step, and additional material is removed from above the dielectric layer using an etch step.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods comprise providing a substrate comprising a first transistor structure comprising an n-type gate material and second transistor structure comprising a p-type gate material, selectively removing the n-type gate material to form a recess in the first gate structure, and then filling the recess with an n-type metal gate material.
摘要:
A method for making a semiconductor device is described. That method comprises modifying a first surface, and forming a high-k gate dielectric layer on an unmodified second surface.
摘要:
A method for making a semiconductor device is described. That method comprises forming on a substrate a first gate dielectric layer that has a first substantially vertical component, then forming a first metal layer on the first gate dielectric layer. After forming on the substrate a second gate dielectric layer that has a second substantially vertical component, a second metal layer is formed on the second gate dielectric layer. In this method, a conductor is formed that contacts both the first metal layer and the second metal layer.
摘要:
Semiconductor integrated circuit structures, such as stacks containing metal layers, may be etched with a modified viscosity etchant. An increased viscosity etchant, for example, may reduce undercutting when a metal film is being etched.
摘要:
A method for making a semiconductor device is described. That method comprises forming a polysilicon layer on a dielectric layer, which is formed on a substrate. The polysilicon layer is etched to generate a patterned polysilicon layer with an upper surface that is wider than its lower surface. The method may be applied, when using a replacement gate process to make transistors that have metal gate electrodes.
摘要:
A semiconductor device and a method for forming it are described. The semiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.