Abstract:
A metal layer is formed on a dielectric layer, which is formed on a substrate. After forming a masking layer on the metal layer, the exposed sides of the dielectric layer are covered with a polymer diffusion barrier.
Abstract:
A method for making a semiconductor device is described. That method comprises forming a high-k gate dielectric layer on a substrate, and modifying a first portion of the high-k gate dielectric layer to ensure that it may be removed selectively to a second portion of the high-k gate dielectric layer.
Abstract:
A method for cleaning a substrate containing a micro-feature having a residue thereon. The method includes treating the substrate with a supercritical carbon dioxide cleaning solution containing a peroxide to remove the residue from the micro-feature, where the supercritical carbon dioxide cleaning solution is maintained at a temperature between about 35° C. and about 80° C. According an embodiment of the invention, the supercritical carbon dioxide cleaning solution can further contain ozone. According to another embodiment of the invention, the substrate can be pre-treated with an ozone processing environment.
Abstract:
A method for etching a metal layer is described. That method comprises forming a metal layer on a substrate, then exposing part of the metal layer to a wet etch chemistry that comprises an active ingredient with a diameter that exceeds the thickness of the metal layer.
Abstract:
A metal silicide may be selectively etched by converting the metal silicide to a metal silicate. This may be done using oxidation. The metal silicate may then be removed, for example, by wet etching. A non-destructive low pH wet etchant may be utilized, in some embodiments, with high selectivity by dissolution.
Abstract:
A method for making a semiconductor device is described. That method comprises forming on a substrate a first gate dielectric layer that has a first substantially vertical component, then forming a first metal layer on the first gate dielectric layer. After forming on the substrate a second gate dielectric layer that has a second substantially vertical component, a second metal layer is formed on the second gate dielectric layer. In this method, a conductor is formed that contacts both the first metal layer and the second metal layer.
Abstract:
A method for making a semiconductor device is described. That method comprises forming a dielectric layer on a substrate, and forming a first metal layer on a first part of the dielectric layer, leaving a second part of the dielectric layer exposed. After a second metal layer is formed on both the first metal layer and the second part of the dielectric layer, a masking layer is formed on the second metal layer.
Abstract:
Suitable particles may be deposited within an extremely small high-aspect ratio via by flowing the particles in a suspension using supercritical carbon dioxide. The particles may be made up of diblock copolymers or silesquioxane-based materials or oligomers of phobic homopolymers or pre-formed silica-based particles stabilized using diblock copolymers and may include chemical initiators to permit in situ polymerization within the via.
Abstract:
A metal silicide may be selectively etched by converting the metal silicide to a metal silicate. This may be done using oxidation. The metal silicate may then be removed, for example, by wet etching. A non-destructive low pH wet etchant may be utilized, in some embodiments, with high selectivity by dissolution.