摘要:
The invention includes a semiconductor construction. The construction has a semiconductor material die with a front surface, a back surface in opposing relation to the front surface, and a thickness of less than 400 microns between the front and back surfaces. The construction also has circuitry associated with the die and over the front surface of the die, and a layer touching the back surface of the die. The layer can correspond to getter-inducing material and/or to a stress-inducing material. The layer can have a composition which includes silicon dioxide and/or silicon nitride. The composition can include one or more hydrogen isotopes, and the hydrogen isotopes can have a higher abundance of deuterium than the natural abundance of deuterium.
摘要:
Techniques are disclosed for fabricating a device using a photolithographic process. The method includes providing a first anti-reflective coating over a surface of a substrate. A layer which is transparent to a wavelength of light used during the photolithographic process is provided over the first anti-reflective coating, and a photosensitive material is provided above the transparent layer. The photosensitive material is exposed to a source of radiation including the wavelength of light. Preferably, the first anti-reflective coating extends beneath substantially the entire transparent layer. The complex refractive index of the first anti-reflective coating can be selected to maximize the absorption at the first anti-reflective coating to reduce notching of the photosensitive material.
摘要:
The invention includes a semiconductor construction. The construction has a semiconductor material die with a front surface, a back surface in opposing relation to the front surface, and a thickness of less than 400 microns between the front and back surfaces. The construction also has circuitry associated with the die and over the front surface of the die, and a layer touching the back surface of the die. The layer can correspond to getter-inducing material and/or to a stress-inducing material. The layer can have a composition which includes silicon dioxide and/or silicon nitride. The composition can include one or more hydrogen isotopes, and the hydrogen isotopes can have a higher abundance of deuterium than the natural abundance of deuterium.
摘要:
The invention encompasses a method of forming a silicon nitride layer. A substrate is provided which comprises a first mass and a second mass. The first mass comprises silicon and the second mass comprises silicon oxide. A sacrificial layer is formed over the first mass. While the sacrificial layer is over the first mass, a nitrogen-containing material is formed across the second mass. After the nitrogen-containing material is formed, the sacrificial layer is removed. Subsequently, a silicon nitride layer is formed to extend across the first and second masses, with the silicon nitride layer being over the nitrogen-containing material. Also, a conductivity-enhancing dopant is provided within the first mass. The invention also pertains to methods of forming capacitor constructions.
摘要:
The present invention includes a method for preventing distortion in semiconductor fabrication. The method comprises providing a substrate comprising a film comprising silicon nitride. The substrate is treated in a vacuum of about 3.0-6.5 Torr in an atmosphere comprising oxygen plasma wherein the oxygen plasma flow rate is at least about 300 sccm oxygen. A resist is applied to the treated substrate and the resist is patterned over the treated substrate.
摘要:
The present invention provides a semiconductor device having a protective layer for use in packaging the semiconductor device. The apparatus includes a dielectric layer, a first passivation layer formed above the dielectric layer, and a protective layer formed above the first passivation layer, the protective layer adapted to reduce stress defect failures in the semiconductor device when packaged.
摘要:
As an alternative embodiment and in connection with the reduction of the amount of ammonia in the mixture, processing conditions may be altered from conditions that are less likely to cause formation to oxide husk 20 to conditions that are more likely. For example, processing temperatures sufficient to form passivation layer 32 may be initiated with an ammonia-rich mixture under conditions not likely to cause formation of oxide husk 20. As the amount of ammonia in the mixture is reduced, processing temperatures may be increased proportionally under conditions that are more likely to cause formation of oxide husk 20 than under conditions previously established when the amount of ammonia in the mixture is greater. The initial formation of some of passivation layer 32, however, resists the formation of oxide husk 20. Preferably, the processing temperature will be the same as the deposition temperature for ILD layer 18.
摘要:
Methods of selectively removing post-etch polymer material and dielectric antireflective coatings (DARC) without substantially etching an underlying carbon-doped low k dielectric layer, and compositions for the selective removal of a DARC layer and post-etch polymer material are provided. A composition comprising trimethylammonium fluoride is used to selectively etch a dielectric antireflective coating layer overlying a low k dielectric layer at an etch rate of the antireflective coating layer to the low k dielectric layer that is greater than the etch rate of the antireflective coating to a TEOS layer. The method and composition are useful, for example, in the formation of high aspect ratio openings in low k (carbon doped) silicon oxide dielectric layers and maintaining the integrity of the dimensions of the formed openings during a cleaning step to remove a post-etch polymer and antireflective coating.
摘要:
A method of forming an oxidation diffusion barrier stack for use in fabrication of integrated circuits includes forming an inorganic antireflective material layer on a semiconductor substrate assembly with an oxidation diffusion barrier layer then formed on the inorganic antireflective material layer. Another method of forming such a stack includes forming a pad oxide layer on the semiconductor substrate assembly with an inorganic antireflective material layer then formed on the pad oxide layer and an oxidation diffusion barrier layer formed on the antireflective material layer. Another method of forming the stack includes forming a pad oxide layer on the semiconductor substrate assembly. A first oxidation diffusion barrier layer is then formed on the pad oxide layer, an inorganic antireflective material layer is formed on the first oxidation diffusion barrier layer, and a second oxidation diffusion barrier layer is formed on the inorganic antireflective material layer. The antireflective material layer may include a layer of material selected from the group of silicon nitride, silicon oxide, and silicon oxynitride and further may be a silicon-rich layer. The oxidation diffusion barrier stacks may be used for oxidation of field regions for isolation in an integration circuit. Further, the various oxidation diffusion barrier stacks are also described.
摘要:
A method of forming an oxidation diffusion barrier stack for use in fabrication of integrated circuits includes forming an inorganic antireflective material layer on a semiconductor substrate assembly with an oxidation diffusion barrier layer then formed on the inorganic antireflective material layer. Another method of forming such a stack includes forming a pad oxide layer on the semiconductor substrate assembly with an inorganic antireflective material layer then formed on the pad oxide layer and an oxidation diffusion barrier layer formed on the antireflective material layer. The antireflective material layer may include a layer of material selected from the group of silicon nitride, silicon oxide, and silicon oxynitride and further may be a silicon-rich layer. The oxidation diffusion barrier stacks may be used for oxidation of field regions for isolation in an integration circuit. Further, the various oxidation diffusion barrier stacks are also described.