Abstract:
Nanoscale efuses, antifuses, and planar coil inductors are disclosed. A copper damascene process can be used to make all of these circuit elements. A low-temperature copper etch process can be used to make the efuses and efuse-like inductors. The circuit elements can be designed and constructed in a modular fashion by linking a matrix of metal columns in different configurations and sizes. The number of metal columns, or the size of a dielectric mesh included in the circuit element, determines its electrical characteristics. Alternatively, the efuses and inductors can be formed from interstitial metal that is either deposited into a matrix of dielectric columns, or left behind after etching columnar openings in a block of metal. Arrays of metal columns also serve a second function as features that can improve polish uniformity in place of conventional dummy structures. Use of such modular arrays provides flexibility to integrated circuit designers.
Abstract:
Ultra-low-k dielectric materials used as inter-layer dielectrics in high-performance integrated circuits are prone to be structurally unstable. The Young's modulus of such materials is decreased, resulting in porosity, poor film strength, cracking, and voids. An alternative dual damascene interconnect structure incorporates air gaps into a high modulus dielectric material to maintain structural stability while reducing capacitance between adjacent nanowires. Incorporation of an air gap having k=1.0 compensates for the use of a higher modulus film having a dielectric constant greater than the typical ultra-low-k (ULK) dielectric value of about 2.2. The higher modulus film containing the air gap is used as an insulator between adjacent metal lines, while a ULK film is retained to insulate vias. The dielectric layer between two adjacent metal lines thus forms a ULK/high-modulus dielectric bi-layer.
Abstract:
A sequence of semiconductor processing steps permits formation of both vertical and horizontal nanometer-scale serpentine resistors and parallel plate capacitors within a common structure. The method of fabricating such a structure cleverly takes advantage of a CMP process non-uniformity in which the CMP polish rate of an insulating material varies according to a certain underlying topography. By establishing such topography underneath a layer of the insulating material, different film thicknesses of the insulator can be created in different areas by leveraging differential polish rates, thereby avoiding the use of a lithography mask. In one embodiment, a plurality of resistors and capacitors can be formed as a compact integrated structure within a common dielectric block, using a process that requires only two mask layers. The resistors and capacitors thus formed as a set of integrated circuit elements are suitable for use as microelectronic fuses and antifuses, respectively, to protect underlying microelectronic circuits.
Abstract:
An integrated circuit die includes a semiconductor substrate, a first dielectric layer on the substrate, and a second dielectric layer on the first dielectric layer. Trenches are formed in the first and second dielectric layers. Metal interconnection tracks are formed on sidewalls of the trench on the exposed portions of the second dielectric layer.
Abstract:
A semiconductor device having a gate positioned in a recess between the source region and a drain region that are adjacent either side of the gate electrode. A channel region is below a majority of the source region as well as a majority of the drain region and the entire gate electrode.
Abstract:
The present disclosure is directed to a device that includes a first substrate having a first plurality of hollow pillars on the first substrate and a first plurality of channels in the first substrate coupled to the first plurality of hollow pillars. The device includes a second substrate attached to the first substrate, the second substrate having a second plurality of hollow pillars on the second substrate and a second plurality of channels in the second substrate coupled to the second plurality of hollow pillars, the first plurality of hollow pillars being coupled to the second plurality of hollow pillars to allow a fluid medium to move through the substrate to cool the first substrate and the second substrate.
Abstract:
A plurality of metal tracks are formed in a plurality of intermetal dielectric layers stacked in an integrated circuit die. Thin protective dielectric layers are formed around the metal tracks. The protective dielectric layers act as a hard mask to define contact vias between metal tracks in the intermetal dielectric layers.
Abstract:
A phase change memory, system, and method for gradually changing the conductance and resistance of the phase change memory while preventing resistance drift. The phase change memory may include a phase change material. The phase change memory may also include a bottom electrode. The phase change memory may also include a heater core proximately connected to the bottom electrode. The phase change memory may also include a set of conductive rings surrounding the heater core, where the set of conductive rings comprises one or more conductive rings, and where the set of conductive rings are proximately connected to the phase change material. The phase change memory may also include a set of spacers, where a spacer, from the set of spacers, separates a portion of a conductive ring, from the set of conductive rings, from the heater core.
Abstract:
A semiconductor structure includes a first circuit row including one or more first circuit cells and a second circuit row including one or more second circuit cells. At a cell boundary between the one or more first circuit cells in the first circuit row and the one or more second circuit cells in the second circuit row, one or more first gate regions of the one or more first circuit cells in the first circuit row are staggered with one or more second gate regions of the one or more second circuit cells in the second circuit row.
Abstract:
An approach provides a semiconductor structure for a first device with a first plurality of channels with a larger horizontal dimension than a vertical dimension of the first plurality of channels a second device comprising a second plurality of channels with a smaller horizontal dimension than the vertical dimension of the second plurality of channels. The first plurality of channels and the second plurality of channels have a same channel width in embodiments of the present invention. The first device is an n-type horizontal gate-all-around device and the second device is a p-type horizontal gate-all-around device.