Abstract:
A method for operating a speed control system of a vehicle is provided. The method comprises detecting an occurrence of a slip event, of a step encounter event, or of both events at a leading wheel of the vehicle. The method also comprises predicting that the occurrence of the detected event(s) will occur at a following wheel of the vehicle. The method yet further comprises automatically controlling vehicle speed, vehicle acceleration, or both vehicle speed and acceleration in response to the detection, the prediction, or both the detection and prediction. A speed control system comprising an electronic control unit (ECU) configured to perform the above-described methodology is also provided.
Abstract:
A method for operating a speed control system of a vehicle is provided. The method comprises detecting an external force acting on the vehicle wherein the external force has an accelerating or decelerating effect on the vehicle. The method further comprises automatically adjusting a rate of change of at least one component of a net torque being applied to one or more wheels of the vehicle to compensate for the accelerating or decelerating effect of the external force on the vehicle. A system for controlling the speed of a vehicle comprising an electronic control unit configured to perform the above-described methodology is also provided.
Abstract:
Embodiments of the present invention provide a motor vehicle control system for selecting a driving surface and for controlling a plurality of vehicle subsystems to operate in a plurality of subsystem configuration modes in dependence on the selected driving surface, the system being operable in a manual operating mode in which a user is able to select said driving surface and an automatic operating mode in which the system is operable to select said driving surface automatically; wherein the system is able to be switched between said manual and automatic operating modes by means of a user-operable input device; and wherein when operating in the automatic operating mode and a change from the automatic operating mode to the manual operating mode is made via the user-operable input device, the system is configured to select a default subsystem configuration mode.
Abstract:
A control system for a vehicle operable to implement a speed control function, the control system comprising: means for receiving a user input of a target speed at which the vehicle is intended to travel; target speed torque determining means for determining an instantaneous value of torque, target speed torque, that should be applied to one or more wheels of the vehicle by a powertrain in order to control the vehicle to travel at the target speed; and filter means operable to filter the value of target speed torque to generate a filtered torque value, the system being operable to command the powertrain to apply to the one or more wheels an amount of torque corresponding to the filtered torque value, wherein the system further comprises modifier means operable to receive the instantaneous value of target speed torque generated by the target speed torque determining means and to input to the filter means a value of torque that is less than the target speed torque in dependence on a current speed of the vehicle and the target speed of the vehicle.
Abstract:
A method for operating a speed control system of a vehicle is provided. The method comprises identifying a torque required to achieve a desired operating parameter of the vehicle. The method further assessing whether the required torque exceeds a predetermined torque limit, and when it does, determining if it is appropriate to increase the torque limit. When it is determined that it is appropriate to do so, the method further comprises increasing the predetermined torque limit. A speed control system of a vehicle comprising an electronic control unit configured to: determine a torque required to achieve a desired operating parameter of the vehicle, assess whether the required torque exceeds a predetermined torque limit; when the torque exceeds the torque limit, determine if it is appropriate to increase the torque limit; and when it is determined that it is appropriate to do so, increase the torque limit, is also provided.
Abstract:
A method for use with a speed control system of a vehicle is provided. The method comprises receiving readings from one or more vehicle sensors to determine the nature of the terrain over which the vehicle is traveling. The method further comprises gathering information relating to one or more parameters of the vehicle that correspond to the configuration of the vehicle. The method still further comprises determining, based on the nature of the terrain and the gathered information, whether the vehicle is appropriately configured to travel over the terrain. A system comprising an electronic control unit configured to perform the method is also provided.
Abstract:
Embodiments of the present invention relate to a control system for a vehicle, the control system comprising at least one controller and being configured to: obtain image data relating to terrain to be traversed by the vehicle, and for each of a plurality of sub-regions of the image data: determine probability data relating to whether the respective sub-region relates to a path region or a non-path region of the terrain; and determine a cost for the vehicle to traverse a portion of the terrain to which the sub-region relates depending on the probability data meeting one or more path probability criteria indicating that the sub-region relates to the path region, one or more non-path probability criteria indicating that the sub-region relates to the non-path region or neither the path probability criteria nor the non-path probability criteria; and determining a vehicle path in dependence on the determined costs.
Abstract:
A control system (10, 19, 185C) for a vehicle (100), the system comprising a processing means (10, 19) arranged to receive, from terrain data capture means (185C) arranged to capture data in respect of terrain ahead of the vehicle by means of one or more sensors, terrain information indicative of the topography of an area extending ahead of the vehicle (100), wherein the terrain information comprises data defining at least one 2D image of the terrain ahead of the vehicle, wherein the processing means (10, 19) is configured to: perform a segmentation operation on image data defining one said at least one 2D image and identify in the image data edges of a predicted path of the vehicle; calculate a 3D point cloud dataset in respect of the terrain ahead of the vehicle based on the terrain information; determine the 3D coordinates of lateral edges of the predicted path of the vehicle by reference to the point cloud dataset, based on the coordinates of edges of the predicted path identified in the 2D image, to determine a 3D predicted path of the vehicle; and control the direction of travel of the vehicle in dependence at least in part on the 3D predicted path.
Abstract:
A speed control system (12) for a vehicle (100), the speed control system (12) being configured to: automatically cause application of positive and negative torque, as required, to one or more wheels of a vehicle (100) to cause a vehicle to travel in accordance with a target speed value, the target speed value being stored in a memory of the control system (12); and detect a crest of a slope ahead of the vehicle (100); wherein the speed control system (12) is configured automatically to attempt to adjust a speed of the vehicle (100) to cause the vehicle (100) to travel at a predetermined crest speed value when a crest of a slope is detected ahead of the vehicle (100), the predetermined crest speed value being determined in dependence at least in part on terrain gradient information respect of terrain prior to the crest.
Abstract:
A vehicle speed control system for a vehicle having a plurality of wheels, the vehicle speed control system comprising one or more electronic control units configured to carry out a method that includes applying torque to at least one of the plurality of wheels, detecting a slip event between any one or more of the wheels and the ground over which the vehicle is travelling when the vehicle is in motion and providing a slip detection output signal in the event thereof. The method carried out by the one or more electronic control units further includes receiving a user input of a target speed at which the vehicle is intended to travel and maintaining the vehicle at the target speed independently of the slip detection output signal by adjusting the amount of torque applied to the at least one of the plurality of wheels.