Abstract:
A flexible display using semiconductor light-emitting devices and a method of fabricating the same are provided. The flexible display includes: a flexible pliable substrate; a display unit with semiconductor light-emitting devices arranged in pixels on the pliable substrate and which produces an image; and first and second circuit layers driving the semiconductor light-emitting devices. The flexible display having the above-mentioned configuration provides flexibility and the semiconductor light-emitting devices offer a high emission efficiency and a long lifespan.
Abstract:
A field emission device for displaying images with good quality is provided. The field emission device includes an anode plate, an anode electrode and a phosphor layer are formed inside of the anode plate, a cathode plate, a plurality of electron emission sources for emitting electrons which correspond to the phosphor layer and a gate electrode having gate holes through which the electrons pass are formed inside of the cathode plate, a mesh grid which is provided between the cathode plate and the anode plate and in which a plurality of electron-controlling holes are formed in a region corresponding to the gate holes, a spacer which supports the mesh grid between the anode plate and the mesh grid, and insulating layers which are formed on both sides of the mesh grid and have windows through which the plurality of electron-controlling holes are exposed and which correspond to a region where the plurality of electron-controlling holes are formed.
Abstract:
A panel for a field emission type backlight device may include a substrate having a plurality of grooves formed on a side of it. The grooves can serve to diverge incident light. An anode electrode and a fluorescent layer may be provided sequentially on the same side of the substrate.
Abstract:
A triode field emission display using carbon nanotubes having an excellent electron emission characteristic is provided. By forming extraction electrodes for controlling emitted electrons around an anode on a front substrate, the triode field emission display (FED) using carbon nanotubes has a simple structure like a diode FED, thereby facilitating manufacture using vapor deposition of carbon nanotubes and allowing control of anode current using extraction electrodes. Accordingly, a large FED can be simply manufactured.
Abstract:
A method of manufacturing a field emitter array using carbon nanotubes, low voltage field emission material, is provided. The method includes the steps of (a) forming a conductive thin film layer on the top of a transparent substrate having a transparent electrode and exposing a predetermined portion of the transparent electrode; (b) forming an opaque thin film layer on the exposed predetermined portion of the transparent electrode; (c) depositing an insulation material on the entire top surface of the transparent substrate and removing the insulation material from the top surfaces of the conductive thin film layer and the opaque thin film layer, thereby forming an insulation layer; (d) forming a gate layer on the top of the insulation layer; and (e) removing the opaque thin film layer and forming carbon nanotube tips on the top of the exposed transparent electrode. Accordingly, the triode carbon nanotube field emitter array can be easily manufactured using a small number of mask layers and without using a special aligner.
Abstract:
A method of vertically aligning pure carbon nanotubes on a large glass or silicon substrate at a low temperature using a low pressure DC thermal chemical vapor deposition method is provided. In this method, catalytic decomposition with respect to hydro-carbon gases is performed in two steps. Basically, an existing thermal chemical vapor deposition method using hydro-carbon gases such as acetylene, ethylene, methane or propane is used. To be more specific, the hydro-carbon gases are primarily decomposed at a low temperature of 400-500° C. by passing the hydro-carbon gases through a mesh-structure catalyst which is made of Ni, Fe, Co, Y, Pd, Pt, Au or an alloy of two or more of these materials. Secondly, the catalytically- and thermally-decomposed hydro-carbon gases pass through the space between a carbon nanotube growing substrate and an electrode substrate made of Ni, Fe, Co, Y, Pd, Pt, Au or an alloy of two or more of these materials or an electrode substrate on which Ni, Fe, Co, Y, Pd, Pt, Au or an alloy of two or more of these materials is thinly deposited by sputtering or electron-beam evaporation, the space to which DC voltage has been applied.
Abstract:
An electric field emission display (FED) and a method for manufacturing a spacer thereof are provided. The FED includes a spacer having a structure in which a multi-focusing electrode layer, an electron beam amplifying layer and a getter layer are stacked between an anode and a cathode, or a spacer having a structure in which a first electrode layer, a first insulating layer, a second electrode layer, a second insulating layer, a third electrode layer, a third insulating layer and a fourth electrode layer are sequentially stacked. Thus, electron beams can be easily focused by the multi-focusing electrode of the spacer, and high luminance can be realized at low current due to electron beam amplification of the electron amplifying apparatus. Also, the diamond tip is used as an electron emission means, to thereby obtain a low driving voltage, stability at a high temperature, and high thermal conductivity. Also, a getter formed of a thin film is used, to thereby minimize a getter adhesion space, and an insulating layer formed of ceramic is used, to thereby suppress leakage current of the electrodes. According to the method for manufacturing the FED and a spacer thereof, time for manufacturing the spacer is reduced, and support stiffness is increased by the insulating layers formed of ceramic interposed between the electrode layers, to thereby increase the aspect ratio of the spacer to a desired level. Also, a multitude of electrode layers to which the negative voltage is applied, is provided in the spacer, to thereby suppress absorption of electrons to the surface of the spacer, and the number of electrons colliding against the fluorescent material is increased, to thereby increase the luminance of the device.
Abstract:
A field emission display having a diamond thin film having a low work function due to its affinity for electrons used for forming a micro-tip. Electron emitting micro-tips are manufactured using diamond or diamond-like carbon which have a low work function due to their affinity for electrons, and thereby facilitate electron emission at a very low gate voltage. Manufacturing a flat micro-tip allows uniform tips to be formed so that a large device can be easily fabricated.
Abstract:
A multiple micro-tips field emission device includes a substrate, an adhesion layer formed on the substrate, a cathode formed in stripes on the adhesion layer, an insulation layer formed on the substrate on which the cathode is formed and having a hole formed therein, micro-tips for field emission, being multiply formed on the cathode in the hole, and a gate electrode formed on the insulation layer in stripes across the cathode and having an aperture for field emission from the micro-tips. The adjustment of the tip size is optionally available during the process. Also, the output current can be controlled in a wide range from nA to mA because of the multiple micro-tips. By forming the tips with tungsten, the device has good strength, oxidation characteristics and work function and has good electrical, chemical and mechanical endurance.