Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and a sheet-form outer electrode spirally wound to surround the separation layer or the inner electrode.
Abstract:
The present disclosure provides a cable-type secondary battery, comprising: an inner electrode; and a sheet-form laminate of separation layer-outer electrode, spirally wound to surround the outer surface of the inner electrode, the laminate being formed by carrying out compression for the integration of a separation layer for preventing a short circuit, and an outer electrode.According to the present disclosure, the electrodes and the separation layer are compressed and integrated to minimize ununiform spaces between the separation layer and the outer electrode and reduce the thickness of a battery to be prepared, thereby decreasing resistance and improving ionic conductivity within the battery. Also, the separation layer coming into contact with the electrodes absorbs an electrolyte solution to induce the uniform supply of the electrolyte solution into the outer electrode active material layer, thereby enhancing the stability and performances of the cable-type secondary battery.
Abstract:
The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; and a first porous supporting layer formed on the electrode active material layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; and a first porous supporting layer formed on the electrode active material layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
Abstract:
The present invention relates to a cable-type secondary battery having a horizontal cross section of a predetermined shape and extending longitudinally, comprising: a core for supplying lithium ions; an inner electrode, comprising a spiral electrode formed by spirally twisting two or more wire-type inner current collectors coated with an inner electrode active material on the surface thereof; a separation layer surrounding the outer surface of the inner electrode to prevent a short circuit between electrodes; and an outer electrode surrounding the outer surface of the separation layer, and comprising an outer electrode active material layer and an outer current collector.The core for supplying lithium ions is disposed in the inner electrode, from which the electrolyte of the core for supplying lithium ions can be easily penetrated into an electrode active material, thereby facilitating the supply and exchange of lithium ions.
Abstract:
The present disclosure relates to a packaging for a cable-type secondary battery, surrounding an electrode assembly in the cable-type secondary battery, the packaging having a moisture-blocking layer comprising sealant polymer layers on both outer surfaces of a moisture-blocking film and a moisture-blocking film disposed between the sealant polymer layers, wherein the moisture-blocking layer is a tube form surrounding the electrode assembly, and the sealant polymer layers in both ends of the moisture-blocking layer are overlapped and adhered with each other in a predetermined part. The packaging according to the present disclosure can be used in a cable-type secondary battery to block moisture from being infiltrated into an electrode assembly, thereby improving the life characteristics of the battery and preventing the deterioration of battery performances.
Abstract:
The anode active material of the present invention comprises silicon-based particles obtained from at least one of silicon, a silicon oxide and a silicon alloy, and the silicon-based particles have a faceted shape, thereby providing high capacity and good life characteristics without causing any deterioration which has been generated in the use of conventional silicon-based particles, and eventually providing a lithium secondary battery having such characteristics.
Abstract:
Disclosed is a wireless charging apparatus for a cable-type secondary battery. The wireless charging apparatus for the cable-type secondary battery according to the present disclosure includes a socket having a space formed inside for mounting the cable-type secondary battery, a first terminal that is electrically connected to an outer current collector of the cable-type secondary battery mounted in the socket, a second terminal that is electrically connected to an inner current collector of the cable-type secondary battery mounted in the socket, and a secondary coil for wireless charging having one end connected with the first terminal and the other end connected with the second terminal, and wound along an outer circumferential surface of the socket. According to the present disclosure, even if a secondary coil for wireless power reception is absent from a cable-type secondary battery, charging may be performed by a method for wireless power transmission and reception.
Abstract:
A solid electrolyte for an electrochemical device includes a composite of a plastic crystal matrix electrolyte doped with an ionic salt and a crosslinked polymer structure having a linear polymer as a side chain chemically bonded thereto. The linear polymer has a weight average molecular weight of 100 to 5,000 and one functional group. The electrolyte has high ionic conductivity comparable to that of a liquid electrolyte due to the use of the plastic crystal, and high mechanical strength comparable to that of a solid electrolyte due to the introduction of the crosslinked polymer structure. A method for preparing the solid electrolyte does not essentially require the use of a solvent, eliminating the need for drying. The electrolyte is suitable for use in a cable-type battery whose shape is easy to change due to its high ionic conductivity and high mechanical strength comparable to that of a solid electrolyte.
Abstract:
The present invention provides an electrode for a secondary battery, more specifically an electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on at least one surface or the whole outer surface of the current collector; a graphite-based coating layer formed on the top surface of the electrode active material layer and comprising graphite, a conductive material and a first polymer binder; and a porous coating layer formed on the top surface of the graphite-based coating layer and comprising a second polymer binder. Also, the present invention provides a secondary battery and a cable-type secondary battery comprising the electrode.