摘要:
An apparatus, system, and method are disclosed to increase data integrity in a redundant storage system. The receive module receives a read request to read data from a logical page spanning an array of N+P number of storage elements. The array of storage elements includes N number of the storage elements each storing a portion of an ECC chunk and P number of the storage elements storing parity data. The data read module reads data from at least a portion of a physical page on each of X number of storage elements of the N+P number of storage elements where X equals N. The regeneration module regenerates missing data. The ECC module determines if the read data and any regenerated missing data includes an error. The read data combined with any regenerated missing data includes the ECC chunk.
摘要:
An apparatus, system, and method are disclosed for reconfiguring an array of solid-state storage elements protected using parity data. The storage element error module determines that one or more storage elements are unavailable to store data (“unavailable storage elements”). The storage element resides in an array with N number of storage elements storing a first ECC chunk and P number of storage elements storing first parity data. The reconfigure data read module reads data from storage elements other than the unavailable storage elements. The data regeneration module uses the first parity data to regenerate missing data from the first ECC chunk. The data reconfiguration module creates a second ECC chunk. The new configuration storage module stores a portion of the second ECC chunk and associated second parity data on (N+P)−Z number of storage elements, wherein 1≦Z≦P.
摘要:
An apparatus, system, and method are disclosed for solid-state storage as cache for high-capacity, non-volatile storage. The apparatus, system, and method are provided with a plurality of modules including a cache front-end module and a cache back-end module. The cache front-end module manages data transfers associated with a storage request. The data transfers between a requesting device and solid-state storage function as cache for one or more HCNV storage devices, and the data transfers may include one or more of data, metadata, and metadata indexes. The solid-state storage may include an array of non-volatile, solid-state data storage elements. The cache back-end module manages data transfers between the solid-state storage and the one or more HCNV storage devices.
摘要:
An apparatus, system, and method are disclosed for a shared, front-end, distributed redundant array of independent drives (“RAID”). A multiple storage request receiver module receives at least two storage requests from at least two clients to store file or object data in one or more storage devices of a storage device set. The storage requests are concurrent and have at least a portion of the data in common. The storage device set includes autonomous storage devices forming a RAID group. Each storage device is capable of independently receiving storage requests from a client over a network. A striping module calculates a stripe pattern and writes N data segments per stripe to N storage devices. A parity-mirror module writes a set of N data segments to parity-mirror storage devices. A sequencer module ensures completion of a first storage request prior to executing a second storage request.
摘要:
An apparatus, system, and method are disclosed for a front-end, distributed redundant array of independent drives (“RAID”). A storage request receiver module receives a storage request to store object or file data in a set of autonomous storage devices forming a RAID group. The storage devices independently receive storage requests from a client over a network, and one or more of the storage devices are designated as parity-mirror storage devices for a stripe. The striping association module calculates a stripe pattern for the data. Each stripe includes N data segments, each associated with N storage devices. The parity-mirror association module associates a set of the N data segments with one or more parity-mirror storage devices. The storage request transmitter module transmits storage requests to each storage device. Each storage request is sufficient to store onto the storage device the associated data segments. The storage requests are substantially free of data.
摘要:
An apparatus, system, and method are disclosed for storage space recovery in solid-state storage. A sequential storage module sequentially writes data packets in a storage division. The storage division includes a portion of a solid-state storage. The data packets are derived from an object. The data packets are sequentially stored by order of processing. A storage division selection module selects a storage division for recovery. A data recovery module reads valid data packets from the storage division selected for recovery, queues the valid data packets with other data packets to be written sequentially, and updates an index with a new physical address of the valid data. The index includes a mapping of physical addresses of data packets to object identifiers. A storage division recovery module marks the storage division selected for recovery as available for sequentially writing data packets in response to completing copying valid data from the storage division.
摘要:
An apparatus, system, and method are disclosed for data storage with progressive redundant array of independent drives (“RAID”). A storage request receiver module, a striping module, a parity-mirror module, and a parity progression module are included. The storage request receiver module receives a request to store data of a file or of an object. The striping module calculates a stripe pattern for the data. The stripe pattern includes one or more stripes, and each stripe includes a set of N data segments. The striping module writes the N data segments to N storage devices. Each data segment is written to a separate storage device within a set of storage devices assigned to the stripe. The parity-mirror module writes a set of N data segments to one or more parity-mirror storage devices within the set of storage devices. The parity progression module calculates a parity data segment on each parity-mirror device in response to a storage consolidation operation, and stores the parity data segments. The storage consolidation operation is conducted to recover storage space and/or data on a parity-mirror storage device.
摘要:
A system and method to reduce the gas fuel supply pressure requirements of a gas turbine, which results in an increased operability range and a reduction in gas turbine trips. According to the method, the gas turbine is allowed to start and operate at supply pressures determined as a function of ambient conditions and gas turbine compressor pressure ratio. This increases the operability window, and reduces or eliminates the need for gas fuel compressors.
摘要:
An apparatus, system, and method are disclosed for coordinating storage requests in a multi-processor/multi-thread environment. An append/invalidate module generates a first append data storage command from a first storage request and a second append data storage command from a second storage request. The storage requests overwrite existing data with first and second data including where the first and second data have at least a portion of overlapping data. The second storage request is received after the first storage request. The append/invalidate module updates an index by marking data being overwritten as invalid. A restructure module updates the index based on the first data and updates the index based on the second data. The updated index is organized to indicate that the second data is more current than the first data regardless of processing order. The modules prevent access to the index until the modules have completed updating the index.
摘要:
An apparatus, system, and method are disclosed for storage space recovery. A storage division selection module selects a first storage division for recovery. The first storage division comprises a portion of solid-state storage in a solid-state storage device. A data recovery module reads valid data from the first storage division in response to selecting the first storage division for recovery. The data recovery module stores the valid data in a second storage division of the solid-state storage device. The data recovery module passes the valid data through at least a portion of a write data pipeline for the solid-state storage device without passing the valid data to a host device and/or without routing the valid data outside of a solid-state storage controller for the solid-state storage device.