Abstract:
A method for fabricating short channel field effect transistors with dual gates and with a gate dielectric having a high dielectric constant. The field effect transistor is initially fabricated to have a sacrificial gate dielectric and a dummy gate electrode. Any fabrication process, such as an activation anneal or a salicidation anneal of the source and drain of the field effect transistor, using relatively high temperature is performed with the field effect transistor having the sacrificial gate dielectric and the dummy gate electrode. The dummy gate electrode and the sacrificial gate dielectric are etched from the field effect transistor to form a gate opening. A layer of dielectric with high dielectric constant is deposited on the side wall and the bottom wall of the gate opening, and amorphous gate electrode material, such as amorphous silicon, is deposited to fill the gate opening after the layer of dielectric has been deposited. Dual gates for both an N-channel field effect transistor and a P-channel field effect transistor are formed by doping the amorphous gate electrode material with an N-type dopant for an N-channel field effect transistor, and by doping the amorphous gate electrode material with a P-type dopant for a P-channel field effect transistor. The amorphous gate electrode material in the gate opening is then annealed at a relatively low temperature, such as 600.degree. Celsius, using a solid phase crystallization process to convert the amorphous gate electrode material, such as amorphous silicon, into polycrystalline gate electrode material, such as polycrystalline silicon. Thus, relatively low temperatures are used in the present invention to preserve the integrity of the gate dielectric having the high dielectric constant.
Abstract:
A semiconductor device and a method of making the device with a raised source/drain has a semiconductive material that is non-selectively deposited in a layer over the device area. The semiconductive material is then etched to form spacers that will form the raised soure/drain areas following doping of the spacers. The gate of the semiconductor device is protected during the etching by an etch stop layer that is grown or deposited over the structure to be protected, e.g., the gate, prior to the deposition of the semiconductive material layer. Lightly doped drain ion implantation is performed prior to the formation of the spacers, and source-drain ion implantation is performed preferably after the formation of the spacers, to create the shallow junctions.
Abstract:
Asymmetrically doped source/drain regions of a transistor are formed employing protective insulating layers to prevent a portion of the gate electrode from receiving an excessive impurity implantation dose and penetrating through the underlying gate insulating layer into the semiconductor substrate. Sidewall spacers are employed during heavy implantation.
Abstract:
A method of manufacturing a semiconductor device on a silicon-on-insulator wafer including a silicon active layer having at least two die pads formed thereon, the at least two die pads separated by at least one scribe lane, including the steps of forming at least one cavity through the silicon active layer in the at least one scribe lane; forming at least one gettering plug in each said cavity, each said gettering plug comprising doped fill material containing a plurality of gettering sites; and subjecting the wafer to conditions to getter at least one impurity into the plurality of gettering sites. A silicon-on-insulator semiconductor wafer including a silicon active layer; a plurality of die pads formed in the silicon active layer; at least one scribe lane between and separating adjacent die pads; and at least one gettering plug in the at least one scribe lane, wherein the at least one gettering plug extends through the silicon active layer and the gettering plug comprises a doped fill material having a plurality of gettering sites.
Abstract:
The invention provides a method of small geometry gate formation on the surface of a high-K gate dielectric. The method provides for processing steps that include gate pattern trimming, gate stack etch, and removal of exposed regions of the high-K dielectric to be performed efficiently in a single etch chamber. As such, process complexity and processing costs are reduced while throughput and overall process efficiency is improved. The method includes fabricating a high-K gate dielectric etch stop dielectric layer on the surface of a silicon substrate to protect the silicon substrate from erosion during an etch step and to prove a gate dielectric. A polysilicon layer is fabricated above the high-K dielectric layer. An anti-reflective coating layer above the polysilicon layer, and a mask is fabricated above the anti-reflective coating layer to define a gate region and an erosion region. The sequence of etching steps discussed above are performed in-situ in an enclosed high density plasma etching chamber environment.
Abstract:
A MOSFET gate or a MOSFET source or drain region comprises silicon germanium or polycrystalline silicon germanium. Silicidation with nickel is performed to form a nickel germanosilicide that preferably comprises the monosilicide phase of nickel silicide. The inclusion of germanium in the silicide provides a wider temperature range within which the monosilicide phase may be formed, while essentially preserving the superior sheet resistance exhibited by nickel monosilicide. As a result, the nickel germanosilicide is capable of withstanding greater temperatures during subsequent processing than nickel monosilicide, yet provides approximately the same sheet resistance and other beneficial properties as nickel monosilicide.
Abstract:
A fully-depleted semiconductor-on-insulator (SOI) transistor device has an SOI substrate with a buried insulator layer having a nonuniform depth relative to a top surface of the substrate, the buried insulator layer having a shallow portion closer to the top surface than deep portions of the layer. A gate is formed on a thin semiconductor layer between the top surface and the shallow portion of the insulator layer. Source and drain regions are formed on either side of the gate, the source and drain regions each being atop one of the deep portions of the buried insulator layer. The source and drain regions thereby have a greater thickness than the thin semiconductor layer. Thick silicide regions formed in the source and drain regions have low parasitic resistance. A method of making the transistor device includes forming a dummy gate structure on an SOI substrate, and using the dummy gate structure to control the depth of an implantation to form the nonuniform depth buried insulator layer.
Abstract:
Low resistance contacts are formed on source/drain regions and gate electrodes by selectively depositing a reaction barrier layer and selectively depositing a metal layer on the reaction barrier layer. Embodiments include selectively depositing an alloy of cobalt and tungsten which functions as a reaction barrier layer preventing silicidation of a layer of nickel or cobalt selectively deposited thereon. Embodiments also include tailoring the composition of the cobalt tungsten alloy so that a thin silicide layer is formed thereunder for reduced contact resistance.
Abstract:
A method of fabricating a transistor having shallow source and drain extensions utilizes a self-aligned contact. The drain extensions are provided through an opening between a contact area and the gate structure. A high-k gate dielectric material can be utilized. P-MOS and N-MOS transistors can be created according to the disclosed method.
Abstract:
A method (100) of forming a transistor (50, 80) includes forming a gate oxide (120) over a portion of a semiconductor material (56, 122) and forming a doped polysilicon film (124) having a dopant concentration over the gate oxide (122). Subsequently, the doped polysilicon film (124) is etched to form a gate electrode (52) overlying a channel region (58) in the semiconductor material (56, 122), wherein the gate electrode (52) separates the semiconductor material into a first region (60) and a second region (68) having the channel region (58) therebetween. The method (100) further includes forming a drain extension region (64) in the first region (60) and a source extension region (72) in the second region (68), and forming a drain region (62) in the first region (60) and a source region (70) in the second region (68). The source/drain formation is such that the drain and source regions (62, 70) have a dopant concentration which is less than the polysilicon film (124) doping concentration. The lower doping concentration in the source/drain regions (62, 70) lowers the junction capacitance and provides improved control of floating body effects when employed in SOI type processes.