摘要:
Techniques are discussed herein identify transmission strategies and to communicate those identified transmission strategies in a transparent communication environment. In some examples, a user equipment (UE) may identify a new transmission strategy for a downlink channel different from a current transmission strategy for the down link channel. The UE may transmit a channel state information (CSI) message that includes an indication of the new transmission strategy identified by the UE. In some examples, a base station may identify the new transmission strategy for the downlink channel. The base station may transmit a codebook subset restriction (CSR) indicator that includes an indication of the new transmission strategy identified by the base station. In some examples, the UE may modify its feedback strategy based on the new transmission strategy.
摘要:
Methods, systems, and devices for wireless communication are described that support a low peak-to-average power ratio (PAPR) precoded reference signal design for multiple-input, multiple-output (MIMO) transmissions. A user equipment (UE) may identify multiple sets of symbols associated with different reference signal waveforms, where each reference signal waveform may be associated with a low PAPR. In some cases, different single-carrier reference signal waveforms may be mapped to subsets of frequency resources through frequency division multiplexing (FDM) for a transmission on a single antenna. However, the addition of single-carrier waveforms through FDM for a transmission via an antenna may result in an uplink transmission having a high PAPR (e.g., as compared to single-carrier waveforms). The UE may reduce the PAPR of the uplink transmission by multiplexing the reference signal waveforms in the time domain (e.g., using time division multiplexing (TDM)).
摘要:
Certain aspects of the present disclosure relate to techniques for power control and user multiplexing for coordinated multi-point (CoMP) transmission and reception in heterogeneous networks (HetNet).
摘要:
Certain aspects of the present disclosure provide techniques and apparatuses for wireless communications. According to certain aspects, a set of protected resources, allocated to a base station of a first cell, that are protected by restricting transmissions of a second cell is determined and received power of a first reference signal from the base station in the set of resources is measured. According to certain aspects, a subset of one or more neighbor base stations that have reduced interference in a set of protected resources is determined and received power measurements for the subset of neighbor cells is excluded when calculating receive signal quality measurements for the subframe.
摘要:
Acknowledgment bundling has been defined for Long Term Evolution (LTE) Time Division Duplex (TDD) systems due to asymmetric DL/UL partitioning. In the case of Frequency Division Duplex (FDD) with a limited uplink (UL) duty cycle, there may be asymmetry associated with a downlink transmission and an associated uplink acknowledgment. For example, there may be a physical downlink shared channel (PDSCH) and a physical uplink control channel (PUCCH) hybrid automatic repeat request acknowledgment (HARQ-ACK) asymmetry. Interference between downlink and uplink transmissions may be a factor contributing to the limited UL duty cycle in an FDD system. For an FDD system having a limited mobile transmission duty cycle, both DL and UL performance may be significantly degraded without proper mitigation techniques. According to certain embodiments of the present disclosure, various HARQ and scheduling techniques may be utilized for minimizing loss due to the limited UL duty cycle.
摘要:
A method, an apparatus, and a computer program product for wireless communication are provided for separating control transmissions and data transmissions within the coverage area of a plurality of transmission/reception points or points that are geographically displaced, the plurality of points comprising a macro node and a plurality of remote radio heads (RRHs) coupled to the macro node. Separating control transmissions and data transmissions in the macro node/RRH configuration may allow UEs to be associated with one set of transmission points for data transmissions and the same set or a different set of transmission points for common control signaling. Separating control transmissions and data transmissions may also allow for faster reconfiguration of antenna ports used for UE data transmission compared with reconfiguration via a handover process.
摘要:
Techniques for mitigating data loss during autonomous system information (SI) reading by a user equipment (UE) are described. For autonomous SI reading, the UE may autonomously determine when to read system information from neighbor cells and may not inform a serving cell. In one design, the UE may autonomously select a SI reading gap for reading system information from a neighbor cell. During the SI reading gap, the UE may suspend reception of downlink transmission from the serving cell, receive system information from the neighbor cell, and maintain capability to transmit on the uplink to the serving cell. In one design, the serving cell may determine SI reading gaps autonomously selected by the UE for reading system information from neighbor cells. The serving cell may communicate with the UE by accounting for the SI reading gaps of the UE, e.g., may suspend communication with the UE during the SI reading gaps.
摘要:
Aspects of the present disclosure include a wireless system to reduce quantization error due to codebook-based PMI reporting by precoding channel state information reference signals (CSI-RSs) via a base station. The eNodeB varies the properties for a CSI-RS transmission in a known pattern and receives varying reports from the UE. The eNodeB can reconstruct the PMI with improved accuracy by combining multiple consecutive reports.
摘要:
Wireless networks may include remote radio heads (RRHs) for extending the coverage of a macro cell. The macro cell may be connected to the RRHs, for example, by optical fiber, and there may be negligible latency between the macro cell and the RRHs. As a user equipment (UE) moves within the macro cell, or between other macro cells, mobility procedures followed by the UE may vary based on the release of the UE (e.g., Rel-8/9, Rel-10, or Rel-11 and beyond). The macro cell may handle all the scheduling within the cell, for itself and the RRHs.
摘要:
Blank subframe link design uses reduced bandwidth either explicit or derived for Closed Subscriber Group (CSG) cell interference mitigation, enabling a non-allowed User Equipment (UE) to co-exist with CSG cells on the same carrier. One could specify UL blank subframes to orthogonalize non-allowed UE and allowed UE transmissions on UL either via explicit UL blank subframe definition or derived from DL blank subframe definition. Scheduling can orthogonalize data transmissions. A femto cell temporarily reducing uplink bandwidth can mitigate uplink control channel residual interference from a non-allowed UE. A relay configures RACH occasion to coincide with non-blank UL subframes as much as possible. UE knowledge of RACH occasion is sufficient to start RACH and hand over procedure. RACH occasions with 10 ms periodicity are supported by assigning all odd/even uplink HARQ interlaces to relay. RACH occasions with 20 ms periodicity are supported by assigning any of the 1/4 UL HARQ interlaces to relay.
摘要翻译:空白子帧链路设计使用明确的或针对封闭用户组(CSG)小区干扰减轻的减少的带宽,使得不允许的用户设备(UE)与同一载波上的CSG小区共存。 可以指定UL空白子帧,以通过显式UL空白子帧定义或从DL空白子帧定义导出在UL上正确化非允许UE和允许的UE传输。 调度可以正交化数据传输。 暂时减少上行链路带宽的毫微微小区可以减轻来自不允许的UE的上行链路控制信道残留干扰。 继电器尽可能地配置RACH时机以与非空白UL子帧重合。 UE对RACH场合的了解足以启动RACH和移交程序。 通过将所有奇/偶上行HARQ交织分配给中继来支持具有10ms周期性的RACH场合。 通过将任何1/4 UL HARQ交织分配给中继,支持具有20ms周期的RACH场合。