Abstract:
The present invention aims at allowing a demodulation reference signal (DMRS) pattern suitable for a terminal to be selected from among a plurality of DMRS patterns including Legacy DMRS and Reduced DMRS. Disclosed is a terminal including: reception section (21) that receives uplink control information; control section (23) that determines a specific mapping pattern from among a plurality of mapping patterns for an uplink DMRS on the basis of the control information; and DMRS generating section (24) that generates a DMRS according to the specific mapping pattern.
Abstract:
The wireless communication comprises: transmitting downlink control information (DCI) from a transmission point to an UE for the enabled TB and the disabled TB, wherein the DCI comprises a 8-value indicator to indicate CoMP states for the enabled TB in conjunction with the new data indicator (NDI) of the disabled TB; if the NDI of the enabled TB is untoggled or the value of the 8-value indicator for the enabled TB is equal to 0, 1, 2, or 3, the UE using the NDI of the disabled TB to select a CoMP state from a first CoMP state and a second CoMP state; and if the NDI of the enabled TB is toggled and the value of the 8-value indicator is 4, 5, 6, or 7, the UE obtaining the information of whether the enabled TB is initial transmission or retransmission based on the NDI of the disabled TB.
Abstract:
Provided are wireless communication methods for D2D communication and UEs therefor. A wireless communication method involves transmitting either a first DCI or a second DCI based on whether a first UE and a second UE are to be in a communication type of groupcast or unicast. In the wireless communication methods, the first DCI and the second DCI are scrambled by the UE ID of the second UE if the first UE and the second UE are in the communication type of unicast upon transmitting the first DCI and the second DCI, and the first DCI and the second DCI are scrambled by the group ID if the first UE and the second UE are in the communication type of groupcast upon transmitting the first DCI and the second DCI.
Abstract:
Provided are a wireless communication method based on multiple-user multi-input multi-output (MU-MIMO) and a corresponding user equipment and eNode B. According to the present disclosure, a first MU-CQI offset corresponding to a first co-scheduled PMI which is fully orthogonal with a desired PMI is reported with a larger number of bits than a second MU-CQI offset corresponding to a second co-scheduled PMI which is not fully orthogonal with the desired PMI. Alternatively, a first MU-CQI off-set corresponding to a first co-scheduled PMI is reported with a first number of bits, and a second MU-CQI offset corresponding to a second co-scheduled PMI which is correlated with the first co-scheduled PMI is reported with a second smaller number of bits or even not reported. Alternatively, MU-CQI offset(s) corresponding to part of a plurality of co-scheduled PMIs configured by RRC is/are reported with a series of bits, wherein a first section of the series of bits indicates at least part of the co-scheduled PMI(s) for which the MU-CQI offset is reported, and a second section of the series of bits indicates the reported MU-CQI offset(s).
Abstract:
Provided is a radio communication device which can reduce ISI caused by destruction of an orthogonal DFT matrix even when an SC-FDMA signal is divided into a plurality of clusters and the clusters are respectively mapped to discontinuous frequency bands. The radio communication device includes a DFT unit (110), a division unit (111), and a mapping unit (112). The DFT unit (110) uses the DFT matrix to execute a DFT process on a symbol sequence in a time region to generate a signal (SC-FDMA signal) of the frequency region. The division unit (111) generates a plurality of clusters by dividing the SC-FDMA signal with a partially orthogonal bandwidth corresponding to the vector length of some of the column vectors constituting the DFT matrix used in the DFT unit (110) and orthogonally intersecting at least partially. The mapping unit (112) maps the clusters to discontinuous frequency bands.
Abstract:
Disclosed is wireless communication base station equipment in which CCE allocation can be flexibly performed without collision of ACK/NACK signals between a plurality of unit bands, even when wideband transmission is performed exclusively on a downlink circuit. In this equipment, an allocation unit (105) sets up mutually different search spaces for each of a plurality of downlink unit bands, with respect to wireless communication terminal devices that communicate using a plurality of downlink unit bands, and allocates resource allocation information of downlink circuit data destined for the wireless communication terminal devices to CCEs in mutually different search spaces for each of the plurality of downlink unit bands, and an ACK/NACK reception unit (119); extracts a response signal in respect of the downlink circuit data from the uplink control channel associated with the CCE to which the resource allocation information of this downlink circuit data was allocated.
Abstract:
The present disclosure provides a communication method that a base station configures different CSI-RS ports with different periodicity based on UE requirement (e.g. mobility) to reduce CSI-RS overhead. And another method is to transmit partial CSI-RS ports in a cyclic shifted manner to further reduce the overhead. In addition, cyclic shifted transmission of split CSI-RS port groups are proposed to reduce the potential big difference of interference onto different CSI-RS port groups.
Abstract:
Disclosed are an encoding ratio setting method and a radio communication device which can avoid encoding of control information at an encoding ratio lower than necessary and suppress lowering of the transmission efficiency of the control information. In the device, an encoding ratio setting unit (122) sets the encoding ratio R′control of the control information which is time-multiplexed with user data, according to the encoding ratio Rdata of the user data, ΔPUSCHoffset as the PUSCH offset of each control information, and ΔRANKoffset as the rank offset based on the rank value of the data channel using Expression (1). R control ′ = O Q ′ = max ( O ⌈ O 10 - Δ offset PUSCH + Δ offset Rank 10 · R data ⌉ , O 4 · M sc ) ( 1 ) Where ┌x┐ is an integer not greater than x, and max(x,y) is the greater one among X and Y.
Abstract:
The wireless communication comprises: transmitting downlink control information (DCI) from a transmission point to an UE for the enabled TB and the disabled TB, wherein the DCI comprises a 8-value indicator to indicate CoMP states for the enabled TB in conjunction with the new data indicator (NDI) of the disabled TB; if the NDI of the enabled TB is untoggled or the value of the 8-value indicator for the enabled TB is equal to 0, 1, 2, or 3, the UE using the NDI of the disabled TB to select a CoMP state from a first CoMP state and a second CoMP state; and if the NDI of the enabled TB is toggled and the value of the 8-value indicator is 4, 5, 6, or 7, the UE obtaining the information of whether the enabled TB is initial transmission or retransmission based on the NDI of the disabled TB.
Abstract:
The purpose of the present invention is to be able to simultaneously generate three or more sets of CSI within a predetermined time interval, without degrading the accuracy of the CSI, to achieve CoMP control for flexible switching of base stations. At predetermined intervals or at timing coincident with reception of trigger information, a generation unit uses a CSI-RS resource to measure a desired signal component and interference component, and generate CSI. A transmission unit transmits control information including the CSI. During a given interval (for example, during four subframes) following reception of trigger information, the generation unit does not measure the interference component, instead using the most recent previously measured interference component, to measure the channel quality.