Abstract:
Various aspects described herein relate to communicating in a wireless network. An uplink resource grant can be received from a network entity for communicating in the wireless network. A transmission time interval (TTI) for an uplink transmission within a subframe based on the uplink resource grant can be determined, wherein the TTI comprises one or more symbols which are a subset of a plurality of symbols in the subframe. Communications can be transmitted to the network entity over resources specified in the uplink resource grant during the TTI.
Abstract:
A data structure for managing user equipment communications in a wireless communication system is presented. In some examples, the data structure may include one or more resource element blocks into which a frequency bandwidth of a downlink channel is divided within a symbol that defines a transmission time interval in a downlink subframe. Furthermore, the data structure may include a control region and a data region within at least one resource element block of the one or more resource element blocks. Additionally, the data structure may include a downlink resource grant, located within the control region, for a user equipment served by the downlink channel. In an additional aspect, a network entity and method for generating the example data structure are provided.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a second base station. The second base station receives a measurement report and a cell identifier, associated with a first base station, from a UE. The second base station determines, based on the cell identifier, that the first base station is in a dormant state. The second base station sends an activation request to the first base station, based on the measurement report, to prompt the first base station to transition from the dormant state to an active state. The second base station further includes handing off the UE to the first base station.
Abstract:
A method of wireless communication includes generating a unique position reference signal (PRS) for a remote radio head having a same physical cell identity (PCI) as a macro eNodeB. The unique PRS is based on a virtual cell ID and/or unique cell global identification (CGI) of the remote radio head such that the unique PRS is different from a PRS of the macro eNodeB. The PRS of the macro eNodeB is based on the PCI. The method also includes transmitting the unique PRS.
Abstract:
The present disclosure provides methods and apparatuses for multi-carrier transmissions over adjacent channels that reduce self-jamming due to asymmetric interference. In an aspect, a large bandwidth load-base equipment (LBE) carrier may be provided such that CCA is performed jointly over the entire bandwidth. In another aspect, additional CCA timeslots may be used to synchronize the two carriers. In a further aspect, an extended CCA may be performed on a primary unlicensed carrier while a simple CCA may be performed on a secondary unlicensed carrier. In yet another aspect, LBE may be deployed on some carriers while frame-base equipment (FBE) may be deployed on other carriers.
Abstract:
Certain aspects of the disclosure relate to performing cross-subframe control channel signaling for wireless communications. A method may be provided for signaling downlink control channel resource allocations and/or physical control format indications in a subframe different from the subframe in which a downlink data transmission may be performed. In one aspect, the method may include transmitting PDCCH and/or PCFICH during a first subframe to allocate resources for a PDSCH during a second subframe and transmitting the PDSCH during the second subframe.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines a first fractional amount of a first data flow to be served to a UE via a first communication link using a first radio access technology (RAT), determines a second fractional amount of the first data flow to be served to the UE via a second communication link using a second RAT, and serves the first fractional amount of the first data flow to the UE using the first communication link.
Abstract:
Certain aspects of the present disclosure relate to techniques for aggregating data from a wireless wide area network (WWAN) and wireless local area network (WLAN). In some aspects, a packet convergence entity (e.g., PDCP layer entity) communicates with first and second radio access technology (RAT) links. The packet convergence entity may determine from which of the first and second RAT links a data packet is received and may monitor a sequence number value of each of the received data packets. The packet convergence entity may perform one or more actions based on a determination that the data packets are received out of order. For example, the packet convergence entity may deliver the data packets to an upper layer entity as they are received (e.g., in order or out of order), may reorder the data packets and ignore data packet losses, and/or may request retransmissions of missing data packets.
Abstract:
A method of wireless communication includes transmitting channel state information reference signal (CSI-RS) configuration information to a user equipment (UE). The CSI-RS configuration information is transmitted so that the UE may mitigate interference caused by interfering CSI-RSs. The CSI-RS configuration may be a CSI-RS configuration of a neighbor cell.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus, e.g., base station, determines a plurality of component carriers configured for a user equipment (UE) served by the apparatus. The plurality of component carriers includes a primary component carrier and a secondary component carrier. The primary component carrier may be a time division duplex (TDD) carrier having a same uplink:downlink configuration as a first cell at a neighboring base station, and the secondary component carrier may be a TDD carrier having a different uplink:downlink configuration as a second cell at the neighboring base station. The apparatus exchanges data with the UE according to an effective uplink-downlink subframe partition of the configured component carriers. The effective uplink-downlink subframe partition may be time varying and the apparatus may operate to limit interference due to the different TDD configurations at the serving and neighbor cells.