Abstract:
It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.
Abstract:
A semiconductor device with a small variation in transistor characteristics is provided. An oxide semiconductor film, a source electrode and a drain electrode over the oxide semiconductor film, an interlayer insulating film placed to cover the oxide semiconductor film, the source electrode, and the drain electrode, and a gate electrode over the oxide semiconductor film are included; an opening is formed overlapping with a region between the source electrode and the drain electrode in the interlayer insulating film; the gate electrode is placed in the opening in the interlayer insulating film; and the source electrode and the drain electrode include a conductive film having compressive stress.
Abstract:
A secondary battery that can inhibit degradation of an electrode is provided. A flexible secondary battery is provided. A flexible secondary battery includes a positive electrode, a negative electrode, and an exterior body surrounding the positive electrode and the negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode active material layer provided over the positive electrode current collector. The negative electrode includes a negative electrode current collector and a negative electrode active material layer provided over the negative electrode current collector. One or both of the positive electrode current collector and the negative electrode current collector have rubber elasticity.
Abstract:
A semiconductor device with a novel structure is provided. The semiconductor device includes a first electrode, a transistor including a back gate, a capacitor including a pair of electrodes, and a first insulator that can have ferroelectricity between the back gate of the transistor and a semiconductor. The first insulator overlaps with the semiconductor with a second insulator therebetween. One of a source electrode and a drain of the transistor is electrically connected to the first electrode. The other of the source and the drain of the transistor is electrically connected to one electrode of the pair of electrodes. The pair of electrodes are each in contact with the first insulator and include a region where the pair of electrodes overlap with each other with the first insulator therebetween. As the first insulator, a ferroelectric is used.
Abstract:
A highly reliable display device with high display quality is provided. The display device includes a first light-emitting element, a second light-emitting element provided to be adjacent to the first light-emitting element, a first protective layer, a second protective layer, and an insulating layer. The first light-emitting element includes a first pixel electrode, a first EL layer, and a common electrode, and the second light-emitting element includes a second pixel electrode, a second EL layer, and the common electrode. The first EL layer is provided over the first pixel electrode, and the second EL layer is provided over the second pixel electrode. The first protective layer includes a region in contact with the side surface of the first EL layer, and the second protective layer includes a region in contact with the side surface of the second EL layer. The insulating layer is provided between the first protective layer and the second protective layer. The common electrode is provided over the first EL layer, over the second EL layer, over the first protective layer, over the second protective layer, and over the insulating layer.
Abstract:
A display device capable of high-quality images can be provided. The display device includes a first light-emitting element, a second light-emitting element, and a gap. The first light-emitting element includes a first light-emitting layer and a first electron-injection layer over the first light-emitting layer, and the second light-emitting element includes a second light-emitting layer and a second electron-injection layer over the second light-emitting layer. The first light-emitting element is adjacent to the second light-emitting element. The gap is placed between the first electron-injection layer and first light-emitting layer and the second electron-injection layer and second light-emitting layer. The first electron-injection layer comprises a region projecting from the side surface of the first light-emitting layer, and the second electron-injection layer comprises a region projecting from the side surface of the second light-emitting layer.
Abstract:
A highly reliable display device is provided. The display device including a light-emitting element and an insulating layer placed to cover the light-emitting element and the light-emitting element includes a first conductive layer, an EL layer over the first conductive layer, and a second conductive layer over the EL layer and the insulating layer includes a first layer, a second layer over the first layer, and a third layer over the second layer and the first layer has a function of capturing or fixing at least one of water and oxygen, the second layer has a function of inhibiting diffusion of at least one of water and oxygen, and the third layer has a higher concentration of carbon than at least one of the first layer and the second layer.
Abstract:
A semiconductor device with a small variation in characteristics is provided. The semiconductor device includes an oxide, a first conductor and a second conductor over the oxide, a first insulator over the first conductor, a second insulator over the second conductor, a third insulator over the first insulator and the second insulator, a fourth insulator over the third insulator, a fifth insulator that is over the oxide and is located between the first conductor and the second conductor; a sixth insulator over the fifth insulator; a seventh insulator over the sixth insulator, and a third conductor over the seventh insulator. The third conductor includes a region overlapping with the oxide, the fifth insulator has a region that is in contact with each of the oxide, the first conductor, the second conductor, and the first to fourth insulators, and the sixth insulator contains hydrogen, nitrogen, oxygen, and silicon.
Abstract:
A semiconductor device with a small variation in transistor characteristics is provided. An oxide semiconductor film, a source electrode and a drain electrode over the oxide semiconductor film, an interlayer insulating film placed to cover the oxide semiconductor film, the source electrode, and the drain electrode, and a gate electrode over the oxide semiconductor film are included; an opening is formed overlapping with a region between the source electrode and the drain electrode in the interlayer insulating film; the gate electrode is placed in the opening in the interlayer insulating film; and the source electrode and the drain electrode include a conductive film having compressive stress.
Abstract:
A semiconductor device having favorable electrical characteristics is provided. The semiconductor device includes a first oxide; a first conductor and a second conductor over the first oxide; a first insulator over the first conductor; a second insulator over the second conductor; a second oxide provided over the first oxide and being in contact with the side surface of the first conductor and the side surface of the second conductor; a third oxide provided over the second oxide and including regions in contact with the side surface of the first insulator and the side surface of the second insulator; a third insulator over the third oxide; and a third conductor over the third insulator.