Abstract:
A computer-assisted surgery (CAS) navigation assembly comprises a micro-electromechanical sensor (MEMS) navigation unit having one or more MEMS to provide at least orientation data. A support receives the MEMS navigation unit therein, the support being adapted to be mounted on the instrument in a fixed orientation relative to established navigated features of the instrument. At least two mating ball-in-socket features are disposed between the MEMS navigation unit and the support at opposed ends thereof for releasably engaging the MEMS navigation unit in precise orientational alignment within the receptacle, the at least two mating ball-in-socket features comprising catches aligned along an axis extending between the opposed ends, at least one of the catches being a biased catch. A method of connecting a MEMS navigation unit with a mating support fixed to a CAS instrument navigated by the CAS system is also provided.
Abstract:
A computer-assisted surgery system comprises instruments adapted to be used to perform tasks related to surgery. A reference device is in a fixed relation to a bone. A rotating magnet creates a magnetic field plane, the rotating magnet being connected to one of the instrument and the reference device. A magnetometer on the other of the instrument and the reference device produces signals as a function of at least its orientation relative to the magnetic field plane. A processing unit tracks said orientation of the instrument relative to the bone using said signals from the magnetometer subjected to the magnetic field plane.
Abstract:
The disclosed device for verifying a hip-knee-ankle angle includes a mounting base having a planar abutting surface adapted for direct abutting against a resected surface on a distal femur, and a first inertial sensor in communication with a computer assisted surgery (CAS) system to determine an orientation of the mounting base and to digitize a mechanical axis of the femur. A visual alignment guide element is pivotably mounted to the mounting base such that the angular position of the visual alignment guide element is adjustable so as to be visually aligned with a mechanical axis of a tibia. A difference between orientations of the mounting base and the visual alignment guide is calculated by the computer assisted surgery system to determine the hip-knee-ankle angle. The visual alignment guide may include a second inertial sensor and/or a laser emitting element.
Abstract:
The disclosed device for verifying a hip-knee-ankle angle includes a mounting base having a planar abutting surface adapted for direct abutting against a resected surface on a distal femur, and a first inertial sensor in communication with a computer assisted surgery (CAS) system to determine an orientation of the mounting base and to digitize a mechanical axis of the femur. A visual alignment guide element is pivotably mounted to the mounting base such that the angular position of the visual alignment guide element is adjustable so as to be visually aligned with a mechanical axis of a tibia. A difference between orientations of the mounting base and the visual alignment guide is calculated by the computer assisted surgery system to determine the hip-knee-ankle angle. The visual alignment guide may include a second inertial sensor and/or a laser emitting element.
Abstract:
A system for calculating a position and orientation of an acetabular cup in computer-assisted surgery comprises a first trackable reference secured to a pelvis, with a frame of reference being associated with the first trackable reference. A device is positionable between a femoral neck and the acetabulum of the pelvis in a known relation, the device having a second trackable reference. Sensors track the trackable references for position and orientation. A position/orientation calculator calculates a position and orientation of the frame of reference and of the device and for determining an orientation of the neck axis with respect to the frame of reference from the known relation at a desired position of the femur. An implant position/orientation calculator provides cup implanting information with respect to the orientation of said neck axis as a function of the tracking for position and orientation of at least the first trackable reference.
Abstract:
A computer-assisted surgery system comprises a first surgical device with a tracking unit tracked during a surgical procedure and adapted to perform a first function associated to the surgical procedure. A second surgical device is adapted to perform a second function associated to the surgical procedure. A triggered unit is triggered when the first surgical device and the second surgical device reach a predetermined proximity relation. A surgical procedure processing unit tracks the first surgical device. A trigger detector detects a triggering of the triggered unit. A CAS application operates steps of a surgical procedure. A controller commands the CAS application to activate a selected step associated with the second function in the surgical procedure when the trigger detector signals a detection. An interface displays information about the selected step in the surgical procedure.
Abstract:
A method and system (10) for the installation of a cutting guide (60) on a bone element (33) in orthopedic computer assisted surgery is provided. The method includes positioning a drill guide (30) against a distal end of the bone element (33), determining at least two pin locations on one of a medial (31) and a lateral side of the bone element (33), fastening locating pins (42) to the bone element (33) at the determined pin locations, removing the drill guide (30) and installing a CAS bone reference (20) in its place on the same locating pins (42), and subsequently mounting the cutting guide (60) to the same locating pins (42).
Abstract:
A computer-assisted surgery (CAS) navigation assembly comprises a micro-electromechanical sensor (MEMS) navigation unit having one or more MEMS to provide at least orientation data. A support receives the MEMS navigation unit therein, the support being adapted to be mounted on the instrument in a fixed orientation relative to established navigated features of the instrument. At least two mating ball-in-socket features are disposed between the MEMS navigation unit and the support at opposed ends thereof for releasably engaging the MEMS navigation unit in precise orientational alignment within the receptacle, the at least two mating ball-in-socket features comprising catches aligned along an axis extending between the opposed ends, at least one of the catches being a biased catch. A method of connecting a MEMS navigation unit with a mating support fixed to a CAS instrument navigated by the CAS system is also provided.
Abstract:
A device (10,10′,20,20′) for digitizing a center of rotation of a hip joint implant component (A,F) with respect to a bone element in computer-assisted surgery. The device (10,10′,20,20′) comprises a detectable member (12,22) trackable for position and orientation by a computer-assisted surgery system (30). A body (11,21) is connected to the detectable member (12,22) in a known geometry. The body (11,21) has a coupling portion (14,14′,24,25) adapted to be coupled to the hip joint implant component (A,F) in a predetermined configuration. The center of rotation of the hip joint implant component (A,F) is calculable in the predetermined configuration as a function of the known geometry and of the position and orientation of the detectable member (12,22).
Abstract:
A tracker device of the type is associated with a surgical instrument and being trackable in space by a CAS system such that a position of the surgical instrument is calculable. A support is adapted to be connected to the surgical instrument. Optical elements are mounted to the support in a first pattern so as to be detectable by the CAS system along a first range of visibility. Other optical elements are mounted to the support in a second pattern so as to be detectable by the CAS system along a second range of visibility, with the first range of visibility and the second range of visibility having at most a common portion, whereby a position of the surgical instrument is tracked within the first and the second range of visibility as a function of the detection of any one of the patterns of the optical elements.