Abstract:
An automated process for microcontact printing is provided, comprising the steps of providing a substrate and a stamp; automatically aligning the substrate and stamp so that the stamp is aligned relative to the substrate to impart a pattern to the substrate at a desired location and with a desired orientation on the substrate; applying an ink to the stamp, the ink including a molecular species adapted to form a self-assembling monolayer (SAM) on the substrate; contacting the stamp and the substrate; and separating the stamp from the substrate.
Abstract:
A technique for creating patterns of material deposited on a surface involves forming a self-assembled monolayer in a pattern on the surface and depositing, via chemical vapor deposition or via sol-gel processing, a material on the surface in a pattern complementary to the self-assembled monolayer pattern. The material can be a metal, metal oxide, or the like. The surface can be contoured, including trenches or holes, the trenches or holes remaining free of self-assembled monolayer while the remainder of the surface is coated. When exposed to deposition conditions, metal or metal oxide is deposited in the trenches or holes, and remaining portions of the article surface remain free of deposition. The technique finds particular use in creation of conductive metal pathways selectively within holes passing from one side of a substrate to another.
Abstract:
A deformable stamp for patterning a surface. The stamp can be placed in contact with an entire 3-dimensional object, such as a rod, in a single step. The stamp can also be used to pattern the inside of a tube or rolled over a surface to form a continuous pattern. The stamp may also be used for fluidic patterning by flowing material through channels defined by raised and recessed portions in the surface of the stamp as it contacts the substrate. The stamp may be used to deposit self-assembled monolayers, biological materials, metals, polymers, ceramics, or a variety of other materials. The patterned substrates may be used in a variety of engineering and medical applications.
Abstract:
A method for forming a molecular film includes the steps of: coating a surface of a substrate having active hydrogen atoms on its surface with a coating solution containing a silane-based compound having at least one reactive group selected from the group consisting of a chloro group, an alkoxy group and an isocyanate group; and effecting an elimination reaction between the active hydrogen atoms on the surface of the substrate and reactive groups of the silane-based compound, thereby covalently bonding the silane-based compounds to the surface of the substrate. The substrate is supplied to a chamber in which an atmosphere is maintained at a low water vapor density. The surface of the substrate is coated with a coating solution containing the silane-based compound and a solvent by using a transfer element. A dehydrochlorination reaction is effected between the active hydrogen atoms and the chloro groups of the silane-based compounds. Thereafter, any coating solution containing unreacted silane-based compounds after coating is removed inside or outside the chamber.
Abstract:
Improved methods of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding. A method for controlling the shape of a liquid on the surface of an article is provided, involving applying the liquid to a self-assembled monolayer on the surface, and controlling the electrical potential of the surface.
Abstract:
A rolling contact layer-by-layer assembly device comprises at least one roller, a cylinder substrate and a motor to rotate the cylinder substrate. The assembly device optionally includes at least one rinsing nozzle and air applicator. The rollers each provide a polyelectrolyte solution to the surface of the cylinder substrate, the polyelectrolyte solutions having an affinity for each other. Excess polyelectrolyte solution can be washed using the rinsing nozzle followed by a drying step prior to the application of the second polyelectrolyte solution. A plurality of bilayers is produced by the continuous application of polyelectrolyte solutions to form an LBL article such as a nano-composite article or film. The film is then removed from the surface of the cylinder substrate.
Abstract:
The present invention provides a method for the selective placement of carbon nanotubes on a particular surface. In particular, the present invention provides a method in which self-assembled monolayers formed on an unpatterned or patterned metal oxide surface are used to attract or repel carbon nanotubes from a dispersion containing the same. In accordance with the present invention, the carbon nanotubes can be attracted to the self-assembled monolayers so as to be attached to the metal oxide surface, or they can be repelled by the self-assembled monolayers bonding to a predetermined surface other than the metal oxide surface containing the self-assembled monolayers.