Abstract:
Novel methods that may be used for the manufacture of plant alkaloid compounds and novel polynucleotide compounds are provided. The plant alkaloid compounds are useful as medicinal compounds.
Abstract:
The present disclosure is directed to the biosynthetic pathway for a nonribosomal peptide synthetase (NRPS)-derived drug and analogs thereof. The invention provides polynucleotide sequences useful for heterologous expression in a convenient microbial host for the synthesis of the NRPS-derived drug, the polypeptides encoded by such polynucleotides, expression vectors comprising the polynucleotides, host cells comprising the polynucleotides or expression vectors, and kits comprising a host cell. Also provided is a method for the production of ET-743, the NRPS-derived drug.
Abstract:
The present invention relates to proteins capable of providing a decorative flowering phenotype in plants and especially in plants belonging to the Kalanchoe genus. The present invention also relates to nucleic acid sequences, or cDNA sequences, and genes encoding the present proteins. The present invention further relates to use of the present proteins, nucleic acid sequences and genes for selecting decorative flowering Kalanchoe plants and decorative flowering Kalanchoe plants comprising the present proteins, mRNA forms of the present cDNAs or the present genes. Specifically, the present invention relates to proteins comprising an amino acid substitution of the amino acid histidine at position 136 and/or the amino acid alanine at position 338 of the methyl transferase protein of a Kalanchoe plant, wherein the amino acid substitution provides a decorative flowering phenotype in the present Kalanchoe plants.
Abstract:
CRISPR-Cas genome editing uses a guide RNA, which includes both a complementarity region, which binds the target DNA by base-pairing, and a Cas9-binding region, to direct a Cas9 nuclease to a target DNA. Further disclosed are methods for increasing specificity of RNA-guided genome editing using CRISPR/Cas9 systems by using truncated guide RNAs (tru-gRNAs).
Abstract:
Methods for increasing specificity of RNA-guided genome editing, e.g., editing using CRISPR/Cas9 systems, using truncated guide RNAs (tru-gRNAs).