Abstract:
Conventionally, in a general-purpose scanning electron microscope, the maximum accelerating voltage which can be set is low, and hence thin crystal samples which can be observed under normal high-resolution observation conditions are limited to samples with large lattice spacing. For this reason, there has no means for accurately performing magnification calibration. As means for solving this problem, the present invention includes an electron source which generates an electron beam, a deflector which deflects the electron beam so as to scan a sample with the electron beam, an objective lens which focuses the electron beam on the sample, a detector which detects an elastically scattered electron and an inelastically scattered electron which are transmitted through the sample, and an aperture disposed between the sample and the detector to control detection angles of the elastically scattered electron and the inelastically scattered electron. The electron beam enters the sample at a predetermined convergence semi-angle, and a lattice image is acquired at a second convergence semi-angle larger than a first convergence semi-angle at which a beam diameter is minimized on the sample.
Abstract:
Provided is a charged particle beam apparatus (111) to and from which a diaphragm (101) can be easily attached and detached, and in which a sample (6) can be arranged under vacuum and under high pressure. The charged particle beam apparatus includes: a lens barrel (3) holding a charged particle source (110) and an electron optical system (1,2,7); a first housing (4) connected to the lens barrel (3); a second housing (100) recessed to inside the first housing (4); a first diaphragm (10) separating the space inside the lens barrel (3) and the space inside the first housing (4), and through which the charged particle beam passes; a second diaphragm (101) separating the spaces inside and outside the recessed section (100a) in the second housing (100), and through which the charged particle beam passes; and a pipe (23) connected to a third housing (22) accommodating the charged particle source (110). The first diaphragm (10) is attached to the pipe (23), and the pipe (23) and the third housing (22) can be attached to and detached from the lens barrel (3) in the direction of the optical axis (30). A space (105) surrounded by the first housing (4) and the second housing (100) is depressurized, and the sample (6) arranged inside the recessed section (100a) is irradiated with a charged particle beam.
Abstract:
A lens adjustment method and a lens adjustment system which adjust a plurality of multi-pole lenses of an electron spectrometer attached to a transmission electron microscope, optimum conditions of the multi-pole lenses are determined through simulation based on a parameter design method using exciting currents of the multi-pole lenses as parameters.
Abstract:
A lens adjustment method and a lens adjustment system which adjust a plurality of multi-pole lenses of an electron spectrometer attached to a transmission electron microscope, optimum conditions of the multi-pole lenses are determined through simulation based on a parameter design method using exciting currents of the multi-pole lenses as parameters.
Abstract:
In a particle-optical projection system (32) a pattern (B) is imaged onto a target (tp) by means of energetic electrically charged particles. The pattern is represented in a patterned beam (pb) of said charged particles emerging from the object plane through at least one cross-over (c); it is imaged into an image (S) with a given size and distortion. To compensate for the Z-deviation of the image (S) position from the actual positioning of the target (tp) (Z denotes an axial coordinate substantially parallel to the optical axis cx), without changing the size of the image (S), the system comprises a position detection means (ZD) for measuring the Z-position of several locations of the target (tp), a control means (33) for calculating modifications (cr) of selected lens parameters of the final particle-optical lens (L2) and controlling said lens parameters according to said modifications.
Abstract translation:在粒子光学投影系统(32)中,通过能量带电粒子将图案(B)成像到目标(tp)上。 所述图案通过至少一个交叉(c)从所述物体平面出射的所述带电粒子的图案化束(pb)中表示; 它被成像为具有给定大小和失真的图像(S)。 为了补偿图像(S)位置与目标的实际定位(tp)(Z表示基本上平行于光轴cx的轴向坐标)的Z偏差,而不改变图像(S)的尺寸, 该系统包括用于测量目标(tp)的若干位置的Z位置的位置检测装置(ZD),用于计算最终粒子光学透镜的选定透镜参数的修改(cr)的控制装置(33) L 2),并根据所述修改来控制所述透镜参数。