Abstract:
To provide an ion gun of a penning discharge type capable of achieving a milling rate which is remarkably higher than that in the related art, an ion milling device including the same, and an ion milling method.An ion generation unit includes a cathode that emits electrons, an anode that is provided within the ion generation unit and has an inner diameter of 5.2 mm or less, and magnetic-field generation means using a permanent magnet of which a maximum energy product ranges from 110 kJ/m3 to 191 kJ/m3.
Abstract:
This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.
Abstract:
An ion source for use in a radiation generator tube includes a back passive cathode electrode, a passive anode electrode downstream of the back passive cathode electrode, a magnet adjacent the anode, and a front passive cathode electrode downstream of the passive anode electrode. The front passive cathode electrode and the back passive cathode electrode define an ionization region therebetween. At least one field emitter array (FEA) cathode is configured to electrostatically discharge due to an electric field in the ion source. The back passive cathode electrode and the passive anode electrode, and the front passive cathode electrode and the passive anode electrode, have respective voltage differences therebetween, and the magnet generating a magnetic field, such that a Penning-type trap is produced to confine electrons from the electrostatic discharge to the ionization region. At least some of the electrons in the ionization region interact with an ionizable gas to create ions.
Abstract:
An ion source is disclosed which utilizes independently powered electrodes that are isolated with a series of insulators. The ion source comprises an anode electrode with a hollow interior, where the anode is disposed between a cathode and an anti-cathode. A magnet or electro-magnet imposes a magnetic field in an axial direction through the bore of the anode. Gas is introduced into the anode area at a controllable pressure. The ion source includes a first voltage differential between the anode and cathode for the production of plasma and a second voltage differential between the anode and the anti-cathode for extraction of ions from the plasma, forming an ion beam, which is preferably of a narrow diameter at low beam energy. In particular, the voltage differential between the anti-cathode and anode is adjusted to control the initial beam divergence of extracted ions. An optional focus electrode with an independent power supply further focuses the ion beam. A final electrode defines the output boundary of the ion source to provide un-perturbed drift of the ions into the vacuum chamber.
Abstract:
Multiple control electrodes are provided asymmetrically within the plasma chamber of an ion source at respective positions along the length of the plasma chamber. Biasing the control electrodes selectively can selectively enhance the ion extraction current at adjacent positions along the length of the extraction slit. A method of generating an ion beam is disclosed in which the strengths of the transverse electric fields at different locations along the length of the plasma chamber are controlled to modify the ion beam linear current density profile along the length of the slit. The method is used for controlling the uniformity of a ribbon beam.
Abstract:
One or more thermal transfer sheets are easily removable and replaceable in an ion source. The ion source has a removable anode assembly, including the thermal transfer sheets, that is separable and from a base assembly to allow for ease of servicing consumable components of the anode assembly. The thermal transfer sheets may be interposed between the consumable components within the anode assembly. The thermal transfer sheets may be thermally conductive and either electrically insulating or conductive.
Abstract:
One or more thermal transfer sheets are easily removable and replaceable in an ion source. The ion source has a removable anode assembly, including the thermal transfer sheets, that is separable and from a base assembly to allow for ease of servicing consumable components of the anode assembly. The thermal transfer sheets may be interposed between the consumable components within the anode assembly. The thermal transfer sheets may be thermally conductive and either electrically insulating or conductive.
Abstract:
A sputter ion source includes an ionizer; a sputter cathode, including a cathode, a sputter insert, and a shielding cap; a forming electrode; cathode insulator; a hollow, cylindrical shielding cathode, surrounding the sputter cathode, and tapered rotationally symmetrically in the region of the sputter insert; and a vacuum-tight housing for enclosing all of the foregoing. The sputter ion source has a prolonged operating life, low maintenance costs, and prevents atomization of parts of the ion source, for generating negative ions, in the vicinity of the cathode insert.
Abstract:
In an ion source, within a support body which supports a plasma production chamber for producing a plasma on the basis of an ion source flange, a cavity is provided ranging from a position near the plasma production chamber to a position near the ion source flange. The cavity serves as a cooling medium passage which introduces a cooling medium to a position near the plasma production chamber to cool the plasma production chamber. The plasma production chamber is cooled at a position very near it by the cooling medium. Therefore, temperature of the plasma production chamber at the time of plasma production is kept at low temperatures.
Abstract:
This ion source 2 has the heating furnace 4 for heating a solid material 6 to produce a vapor 8, the plasma production vessel 16 for producing a plasma 24 by ionizing this vapor 8, and the vapor conduit tube 10 connecting both the heating furnace 4 and the plasma production vessel 16. In this ion source 2, using indium fluoride 6a as the solid material 6, an ion beam 30 containing indium ions is led out, while the temperature of the heating furnace 4 is kept in a range from 450null to 1170null C., and below the temperature of the plasma production vessel 16.