Abstract:
Provided are a chromium-free surface-treated tinplate, a production method and a surface treating agent thereof. By coating, on the surface of a tinplate, an environmentally friendly aqueous surface treating agent containing 0.1-5 wt % of a zinc salt, 0.1-5 wt % of a zirconium salt and/or a molybdenum salt and 5-30 wt % of siloxane or polysiloxane, a layer of chromium-free passivation film having uniform and dense ingredients and a good performance and being stable is formed on the surface of a tin layer. The passivation film contains 0.1-20 mg/m2 of zinc, 0.1-20 mg/m2 of zirconium and/or molybdenum and 0.5-100 mg/m2 silicon. The passivation film can impart an excellent surface stability, corrosion resistance and paint film adhesion performance to the surface of the tinplate; in addition, contact with food is safe. The tinplate is comparable to chromium passivation in performance, and the production process thereof does not use a chromate, so that a truly green production process of a tinplate is achieved, complying with the requirements of increasingly strict environmental protection laws and regulations.
Abstract:
Provided is a chemical conversion agent that, with respect to an aluminum metal material, etc., contributes to superior corrosion and moisture resistance, contributes to superior adhesion with a laminate film, and contributes to superior hydrofluoric acid and alkali resistance. The chemical conversion agent includes: one or more type of metal element (A) selected from a group comprising of zirconium, titanium, and hafnium; vanadium element (B); and a resin (C). The resin (C) includes a polyvinyl alcohol resin (C1). The ratio (Wa/Wb) of the weight-based total content (Wa) of the metal element (A) relative to the weight-based content (Wb) of vanadium element (B) is 0.1-15, and the ratio ((Wa+Wb)/Wc1) of the weight-based total content (Wa+Wb) of the metal element (A) and the vanadium element (B) relative to the weight-based total content (Wc1) of the polyvinyl alcohol resin (C1) is 0.25-15.
Abstract:
A process for surface treating aluminum or aluminum alloy comprises the following steps. Providing a substrate made of aluminum or aluminum alloy. The substrate is treated with a chemical conversion treatment solution containing molybdate as the main film forming agent, to form a molybdate conversion film on the substrate. Then, a ceramic coating comprising refractory compound is formed on the molybdate conversion film by physical vapor deposition.
Abstract:
A process for surface treating aluminum or aluminum alloy comprises the following steps. Providing a substrate made of aluminum or aluminum alloy. The substrate is treated with a chemical conversion treatment solution containing molybdate as the main film forming agent, to form a molybdate conversion film on the substrate. Then, a ceramic coating comprising refractory compound is formed on the molybdate conversion film by physical vapor deposition.
Abstract:
A method for surface treatment of sheets and strips of aluminum alloy to form a chemically altered layer. The sheet or strip is the product of a manufacturing process including a thermal treatment step followed by cooling in a liquid in which a chemical conversion is carried out using the cooling liquid. The cooling liquid preferably contains between 1 and 10% by weight of at least one salt of one at least of the metals Si, Ti, Zr, Ce, Mn, Mo and V. The invention is particularly applicable to sheets and strips which need a controlled oxide surface for the production of chassis components for the automobile industry for spot gluing or welding.
Abstract:
The present invention is directed to an aqueous, antitarnish and adhesion promoting treatment composition, comprising: zinc ions; metal ions selected from the group consisting of tungsten ions, molybdenum ions, cobalt ions, nickel ions, zirconium ions, titanium ions, manganese ions, vanadium ions, iron ions, tin ions, indium ions, silver ions, and combinations thereof; and optionally, an electrolyte that does not contain potassium or sodium ions; wherein the treatment composition is substantially free of chromium, and wherein the treatment composition forms a coating on a substrate or material that enhances adhesion of a polymer to the material. The present invention is also directed to materials coated with the above treatment composition, and methods of coating materials using the above composition.
Abstract:
Improvements in MolyPhos corrosion resistant coatings for zinc plated surfaces and zinc alloy surfaces are presented, which enhances corrosion protection in marine environments, and other corrosive atmospheres. In particular a cerium fluoride stabilized MolyPhos coating, and organic acid stabilized coatings are provided, which improve resistance to standard salt fog test exposures to at least 300 hrs, thus extending applicability of a conventional MolyPhos coating to applications to telecommunications, electronics, automotive and aviation equipment. MolyPhos coatings offer promise as an environmentally friendly alternative to conventional chromate corrosion coatings.
Abstract:
An object of the present invention is to provide a method for forming an initial anticorrosive film in an absorption chiller-heater, by selecting optimal conditions of absorbent solution, steel material surface and film-forming operation for forming a good initial anticorrosive film. In the process for forming an initial anticorrosion film in an absorption chiller-heater having steel parts and containing an absorbent solution comprising lithium bromide as its main component and containing a lithium molybdate corrosion inhibitor according to the present invention, the main characteristics are that at least part of the steel parts of the absorption chiller-heater contacting with an absorbent solution at a temperature of higher than 100.degree. C. include a bare metal surface having an arithmetic mean surface roughness of not more than 1.0 .mu.m; the absorbent solution supplied comprises lithium bromide as its main component and contains a lithium molybdate corrosion inhibitor dissolved in the solution at a level of 450-750 ppm; and that an initial anticorrosion film forming operation is conducted at a condition such that amount of the lithium molybdate dissolved in the absorbent solution is maintained at not less than 200 ppm.
Abstract:
A process for treating metal surfaces that includes first contacting the metal surface with a particular acidic peroxide adhesion promoting composition, followed by contacting that metal surface with an alkaline solution. This treatment is particularly suitable for treating metal surfaces used in printed circuit multilayer construction.
Abstract:
A liquid rust proof film-forming composition comprises (A) an oxidative substance, (B) a silicate and/or silicon dioxide and (C) at least one member selected from the group consisting of metal cations of Ti, Zr, Ce, Sr, V, W and Mo; and oxymetal anions and fluorometal anions thereof. The composition can be used in a method for forming a rust proof film on a metal substrate which comprises the step of immersing the metal substrate in the composition. The composition and the methods form an excellent rust proof film on the surface of metal substrates without using any chemical substance harmful to environment such as hexavalent chromium.