Abstract:
An improved lubrication system for a two-stroke engine having a lubrication path from an oil sump directly to an induction valve assembly for noise reduction. The oil sump is divided into two chambers with a restricted passage therebetween to ensure lubrication of transmission gears upon startup while reducing drag during operation. A cross-drilled lubrication passage through each crankshaft throw terminates in a second passage proximate a dead-end plug, the second passage being in communication with the piston rod bearing. Each piston skirt includes at least one axial groove in registration with an oil supply passage. Circumferential grooves distribute the oil around the piston skirt from the axial grooves. The pistons may include ceramic top layers for heat insulation to increase the compression ratio possible by raising the ring positions. The engine incorporates an air/oil mixture separator within a balancer shaft chamber and air from the chamber is directed to the intake system.
Abstract:
The present invention addresses the need for a liner with a hard inner surface and a machinable outer surface for use in a pump for abrasive or corrosive materials. According to one embodiment, the present invention provides technical advantages not previously seen in a corrosive or abrasive fluid pump liner comprising a cylindrical sleeve and a cylindrical shell around the sleeve, the shell comprising iron.
Abstract:
A piston for diesel engines is made of a toughness-increasing aluminium alloy containing copper, nickel, silicon, magnesium, iron and manganese. The use of this material, which can conventionally be chill-cast, and by implying special dimensions, provides a piston which, despite its relatively light construction, provides the utmost security against cracking in the stressed regions, e.g. the piston boss or the combustion chamber recess.
Abstract:
A method of flexibly manufacturing engine blocks by first bonding an extruded tube liner insert, of a given thickness (1-15 mm), to a fixed configuration block, the liner insert having been coated with an anti-friction wear-resistant coating having a controlled standard thickness, and secondly bonding an extruded tube liner insert of a different thickness (again selected from 1-15 mm) to another of the fixed configuration blocks, the second liner insert having been coated with the same type of anti-friction wear-resistant coating in essentially the same controlled standard thickness. The common sized engine block can have (i) identically shaped circular cylindrical bore walls or (ii) ovoid cylindrical bore walls with the liner insert having an interior surface shape selection varying between circular to ovoid. The block and liner insert may be both made of aluminum. To promote wear-resistant and lubricant qualities, the coating may contain a mixture of hard particles (such as stainless steel, nickel, chromium or vanadium) and solid lubricant particles such as oxides of iron having controlled oxygen, BN, LiF, NaF.sub.2 or a eutectic of LiF/NaF.sub.2.
Abstract:
A piston having at least one piston ring in combination with a cylinder of a two-stroke internal combustion engine. The piston is made from an aluminum alloy and has a running layer covering at least 80% of the running surface of the piston. The running layer is made from resin-bound graphite. The piston ring has a crowned running surface and is made from cast iron or steel. The cylinder includes a running surface where at least the running surface is made from an aluminum alloy. The running surface has a roughness of less than 1 micron. The running layer on the piston has a thickness between 10 and 20 microns. The graphite particles which form the running layer have a size between 1 and 10 microns.
Abstract:
An improved method of manufacturing a piston is provided. The piston includes a substantially cylindrical member having a first end and a second end. The cylindrical member includes an open cavity extending axially from the second end to adjacent the first end such that the second end has an inner annular surface defined by an inner diameter. The piston further includes a disk having a radially outer surface defined by an outer diameter fixedly secured to the second end of the cylindrical member. The outer diameter of the disk is substantially equal to the inner diameter of the inner annular surface of the second end of the cylindrical member. A circumferentially extending recessed area for receiving particles produced while fixedly securing the disk to the second end of the cylindrical member is provided on either the radially outer surface of the disk or the inner annular surface of the second end of the cylindrical member.
Abstract:
A piston for developing compression within the cylinder of a combustion engine or other type compression generating apparatus; said piston being a two-piece assembly, whereas the topside portion, or traditionally known as the crown, being of relative disc-shape in relation to asymetrics of said piston, is connected to the lower portion, or traditionally known as the skirt, by a distinct fastening means that consist of said crown being concaved from the underside and having multiple vertically positioned ridges that align the inside perimeter of said underside. Said skirt has another set of matching vertically positioned ridges that align the outer perimeter at the top of said skirt, as said top is appropriately sized to match said underside of said crown so that said crown may be press-fitted to said top of said skirt for a rigid and complete piston assembly. Said two-piece assembly allows said piston to be comprehensively configured of two distinctively different material compositions, such as, said crown being composed of a latent-cast elemental metal and said skirt being composed of a resin-based epoxy.
Abstract:
The present invention discloses an internal combustion piston engine having a cylinder and a piston, the cylinder having an internal cylindrical bore and an inner wall, the piston being slidable within the cylinder, the piston having a top portion and a skirt portion below the top portion, the skirt having a wide portion with a diameter greater than the diameter of the cylinder bore, the piston being made of a resiliently deformable material and, upon insertion into the cylinder, the piston deforms such that there is no clearance between the wide portion of the piston and the inner wall of the cylinder. The skirt portion of the piston may also have an elliptical cross-sectional profile, the elliptical cross-sectional profile having a long axis longer than the inside diameter of the cylinder and a short axis shorter than the inside diameter of the cylinder.
Abstract:
A piston assembly operable within a fluid bathed, cylinder wall, comprising a piston body (10) having at least one annular land (36) adapted to be in close-fitting relationship to the cylinder wall (37) an abradable coating (15) tenaciously adhered to said at least the one land (36) effective to create and sustain substantially zero clearance with the fluid bathed cylinder wall and a heat sink in the form of at least one of (i) heat conductors (23) in the coating to conduct heat from the land (36) and (ii) a piston body interior (52) effective to receive a heat conducting fluid (26) moving along the interior to extract heat therefrom. The abradable coating comprises solid lubricants at least two of which are selected from the group consisting of graphite, molydisulphide and boron nitride The heat conductors in the coating preferably consist of copper particles distributed throughout the coating and constitute at least 70-90% by weight of the abradable coating.
Abstract:
The present invention provides an Al-Si based sintered alloy of high strength and high ductility, a method for production thereof and use thereof. The alloy comprises 1-45% of Si, 0.1-20% of an element of Group IIIa, 0.01-5% of at least one element of Groups IVa and Va, the balance of substantially Al. This alloy can further contain at least one of 0.01-5% of Cu, 0.01-5% of Mg, 2.0% or less of Fe, 1.5% or less of Mn and 1.5% or less of Co and the oxygen content is reduced to 0.15% or less by sintering under vacuum. The present invention is applied to automobile parts such as a piston and scroll compressors. The alloy has a tensile strength of about 40 kg/mm.sup.2 or higher and an elongation of 1.5% or more at 150.degree. C.
Abstract translation:本发明提供一种高强度,高延展性的Al-Si系烧结合金,其制造方法及其应用。 该合金包括1-45%的Si,0.1-20%的IIIa族元素,0.01-5%的至少一种元素Ⅳa和Ⅴa,余量基本为Al。 该合金可以进一步含有Cu的0.01-5%,Mg的0.01〜5%,Fe的2.0%以下,Mn的1.5%以下,Co的1.5%以下,氧的含量减少为 在真空下烧结0.15%以下。 本发明适用于诸如活塞和涡旋压缩机的汽车部件。 该合金的拉伸强度为约40kg / mm 2以上,在150℃下的伸长率为1.5%以上。