摘要:
A programmable logic device (PLD) having one or more programmable logic regions and one or more conventional input/output regions additionally has one or more peripheral areas including specialized circuitry. The peripheral specialized regions, which are not connected to the remainder of the programmable logic device (and may be made on separate dies from the remainder of the programmable logic device mounted on a common substrate), and one or both of the programmable logic regions and the conventional I/O regions, have contacts for metallization traces or other interconnections to connect the peripheral specialized regions to the remainder of the programmable logic device. The same PLD can be sold with or without the specialized circuitry capability by providing or not providing the interconnections. The peripheral specialized regions may include high-speed I/O (basic, up to about 3 Gbps, and enhanced, up to about 10-12 Gbps), as well as other types of specialized circuitry.
摘要:
Data transmitter circuitry on a programmable logic device (“PLD”) includes a plurality of channels of serializer circuitry, and a plurality of clock multiplier units (“CMUs”), each of which is associated with a respective subplurality of the serializer channels. Each CMU includes multiple reference clock signal sources, multiple phase-locked loop (“PLL”) circuits, and circuitry for allowing any PLL to get its reference input from any of the reference sources. Raw and centrally processed clock signals produced by each CMU are distributed to the serializer channels associated with that CMU and, at least in the case of the centrally processed signals, to the serializer channels associated with another CMU. The signal that controls release of parallel data to each serializer channel can be an output signal of that channel, or it can be an output signal of any CMU from which that channel can get a clock signal.
摘要:
High speed transmitter drivers and other types of driver circuitry may be required to produce output signals with variable slew rates. Driver circuitry and methods for providing variable slew rate control are described. Pre-driver circuitry with variable slew-rate may be used to supply signals with variable slew rate at the driver input. The driver and/or pre-driver circuits may include transistors with variable drive strengths. The driver and/or pre-driver circuits may also include selectably enabled stages for varying the circuit drive strength. The pre-driver circuitry may be delay matched to maintain signal quality. Other circuitry and methods are also described.
摘要:
A data converter, or “gearbox,” for a padded protocol interface can perform a number of different conversions—e.g., between 64 and 66 bits, between 24 and 26 bits, or between 48 and 50 bits. This is accomplished by clocking the gearbox at different clock speeds, all derived from the same master clock (which may be recovered from the data in a receiver embodiment) using programmable dividers that allow the user to select the clock speed. When the conversion is not that one with the maximum width for which the gearbox is designed, unused bits are ignored. The converter can also find padding bits, for alignment purposes, in data of different widths, again ignoring unused bits when the data are not the widest for which the converter is designed.
摘要:
A serial interface for a programmable logic device can be operated according to various communications protocols and includes both a receiver portion and a transmitter portion. The receiver portion includes at least a word or byte alignment stage, a de-skew stage, a rate compensation or matching stage, a padded protocol decoder stage (e.g., 8B/10B decoder circuitry or 64B/66B decoder circuitry), a byte deserializer stage, a byte reorder stage, and a phase compensation stage. The transmitter portion includes at least a phase compensation stage, a byte deserializer stage, and a padded protocol encoder stage (e.g., an 8B/10B encoder circuitry or 64B/66B encoder circuitry). Each stage may have multiple occurrences of relevant circuitry. Selection circuitry, such as multiplexers, selects the appropriate stages, and circuitry within each stage, for the protocol being used.
摘要:
Circuitry and methods are provided for an LVDS-like transmitter that may be able to DC couple to a receiver having a CML termination scheme. Replacing the common mode voltage source of an LVDS transmitter with a resistive pulldown to ground may allow the transmitter to interface in a DC coupled fashion with a CML receiver. Further, the resistive pulldown may be programmable. This LVDS-like transmitter may be able to support a wider customer base by allowing it to DC couple to a wider range of termination voltage levels, such as CML termination voltage levels.
摘要:
The present invention is directed to fibrate compositions having improved pharmacokinetic profiles and reduced fed/fasted variability. The fibrate particles of the composition have an effective average particle size of less than about 2000 nm.
摘要:
A programmable logic device has many regions of programmable logic, together with relatively general-purpose, programmable, interconnection resources that can be used to make interconnections between virtually any of the logic regions. In addition, various types of more local interconnection resources are associated with each logic region for facilitating the making of interconnections between adjacent or nearby logic regions without the need to use the general-purpose interconnection resources for those interconnections. The local interconnection resources support flexible clustering of logic regions via relatively direct and therefore high-speed interconnections, preferably in both horizontal and vertical directions in the typically two-dimensional array of logic regions. The logic region clustering options provided by the local interconnection resources are preferably boundary-less or substantially boundary-less within the array of logic regions.
摘要:
A serial interface for a programmable logic device supports a higher physical medium attachment (“PMA”) data rate than the available physical coding sublayer (“PCS”) data rate by using multiple PCS modules, operating in parallel, to support one PMA module. In a channel-based structure, the PMA module is supported by a PCS module in its own channel and at least one PCS module from a second channel. The second channel may include its own PMA module which, if provided, may operate at a lower rate, supportable by the PCS module in that channel. Optionally, two modes are provided. In one mode, two PCS modules in two channels support one higher-speed PMA module in one of the channels. In a second mode, each PCS module supports a PMA module in its own channel, with the higher-speed PMA module constrained to operate at the lower data rate of the PCS module.
摘要:
A programmable logic integrated circuit device has a plurality of regions of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from, and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources may have what may be termed normal signal speed, while a smaller minor portion may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.