Abstract:
In piezoelectric thin films constituting crystalline dielectric thin film elements used for a piezoelectric actuator of a liquid discharge head, stress is generated in the crystallization step by heating due to the lattice misfit. Given this fact, by interposing between a substrate and intermediate layer which has a twin structure that absorbs the stress, film peeling and deterioration of the piezoelectric properties of the piezoelectric thin films are prevented. The intermediate layer is of a multi-layer structure which has a first intermediate layer comprising a twin structure thin film and a second intermediate layer which is the lower electrode, and because the substrate also serves as a lower electrode, the intermediate layer has a single layer structure comprising a twin structure thin film.
Abstract:
To provide a film forming method capable of obtaining a high-quality perovskite type oxide thin film, piezoelectric element having a piezoelectric substance constituted of the thin film formed by the film forming method, liquid discharge head having the piezoelectric element and liquid discharge apparatus having the liquid discharge head. A method for forming a perovskite type oxide thin film having a composition expressed by (A1x, A2y A3z) (B1j, B2k, B3l, B4m B5n)Op is included, which is a film forming method having a plurality of steps for supplying a material containing the elements onto the substrate, dividing the elements A1 to A3 and B1 to B5 into a plurality of groups and supplying each material containing the elements included in the groups onto the substrate in separate steps.
Abstract:
A piezoelectric element including an upper electrode, a piezoelectric and/or electrostrictive material and a lower electrode, characterized in that the piezoelectric and/or electrostrictive material is a composite oxide constituted by ABO3 as general formula and the piezoelectric and/or electrostrictive material has a twin crystal.
Abstract:
A piezoelectric element including an upper electrode, a piezoelectric and/or electrostrictive material and a lower electrode, characterized in that the piezoelectric and/or electrostrictive material is a composite oxide constituted by ABO3 as general formula and the piezoelectric and/or electrostrictive material has a twin crystal.
Abstract:
A piezoelectric structure includes a vibrational plate and a piezoelectric film. The vibrational plate includes a layer of a monocrystal material, a polycrystal material, a monocrystal material doped with an element which is different from an element constituting the monocrystal material, or a polycrystal material doped with an element which is different from an element constituting the polycrystal materials. Oxide layers sandwich the aforementioned layer. The piezoelectric film has a single orientation crystal or monocrystal structure.
Abstract:
A dielectric member including, on a substrate, a lower electrode, an oriented dielectric layer, and an upper electrode, in which at least either of the electrodes has an at least two-layered structure constituted of perovskite type oxide conductive layers, and has an orientation.
Abstract:
A method of manufacturing an actuator comprises the steps of bonding a piezoelectric film formed on a single crystal substrate to a diaphragm structure member and removing the single crystal substrate therefrom to manufacture the actuator. The single crystal substrate is a substrate having bonded portions where a plurality of single crystal substrates are bonded together.
Abstract:
A heat developing photosensitive member including: a photosensitive layer containing at least an organic silver salt, a reducing agent and a photosensitive silver halide or a photosensitive silver halide forming agent; and a supporting member for supporting the photosensitive layer thereon, wherein merocyanine dye having a structure in which a thiazole nucleus or selenazole nucleus and hydantoin nucleus, thiohydantoin nucleus or selenohydantoin nucleus are combined with each other by a combining group having a methine group is contained in the photosensitive layer.
Abstract:
An image is formed by subjecting to imagewise exposure an image forming medium containing at least a heat-diffusible coloring matter, a photosensitive silver halide, an organic silver salt, a reducing agent, a polymerizable polymer precursor and a photopolymerization initiator; heating the image forming medium thus treated; subjecting it to polymerization exposure to form a polymerized area and an unpolymerized area in the image forming medium; separating the polymerized area from the unpolymerized area; and superposing an image receiving medium onto the unpolymerized area to transfer the heat-diffusible coloring matter in the unpolymerized area to the image receiving medium.
Abstract:
An image forming method is conducted by subjecting a dry silver salt image forming medium to imagewise exposure and heating to form a light-absorbing organic compound. Thereafter, the medium is subjected to polymerization exposure to imagewise polymerize the medium based on the formation pattern of the light-absorbing compound. The light-absorbing organic compound has specific sensitivities to light in order to maximize contrast.