Abstract:
A tunneling injection based Schottky source/drain memory cell comprising: a first semiconductor layer with a first conductivity type overlying an insulating layer, wherein the first semiconductor acts as a body region; a gate dielectric overlying the semiconductor layer; a gate electrode overlying the gate dielectric; a pair of spacers on sides of the gate electrodes; and a first Schottky barrier junction formed on a source region and a second Schottky barrier junction formed on a drain region on opposing sides of the body region. The source and the regions have an overlapping portion with the gate electrode and length of overlapping portion is preferably greater than about 5 Å. Interfacial layers are formed between the first and the second Schottky barrier regions.
Abstract:
A magnetic oscillation metric controller applied to computer peripheral or electronic communication system essentially operating on a scrolling wheel for lateral metric control to provide precise, consistent, reliable and programmable adjustment oscillation sensitivity by driving a permanent magnet to generate signals of changed magnetic fields resulted from displacement; and retrieving the data of changed signals for achieving metric control purpose.
Abstract:
A semiconductor device includes a region of semiconductor material with first and second isolation trenches formed therein. The first isolation trench is lined with a first material having a low oxygen diffusion rate and is filled with an insulating material. The second isolation trench is not lined with the first material but is filled with an insulating material. A first transistor is formed adjacent the first isolation region and a second transistor formed adjacent the second isolation region.
Abstract:
A transistor structure comprises a channel region overlying a substrate region. The substrate region comprises a first semiconductor material with a first lattice constant. The channel region comprises a second semiconductor material with a second lattice constant. The source and drain regions are oppositely adjacent the channel region and the top portion of the source and drain regions comprise the first semiconductor material. A gate dielectric layer overlies the channel region and a gate electrode overlies the gate dielectric layer.
Abstract:
Disclosed is a method of manufacturing microelectronic devices including forming a silicon substrate with first and second wells of different dopant characteristics, forming a first strained silicon-germanium-carbon layer of a first formulation proximate to the first well, and forming a second strained silicon-germanium-carbon layer of a second formulation distinct from the first formulation proximate to the second well. Capping and insulating layers, gate structures, spacers, and sources and drains are then formed, thereby creating a CMOS device with independently strained channels.
Abstract:
A semiconductor isolation trench includes a substrate and a trench formed therein. The trench is lined with a nitrogen-containing liner and filled with a dielectric material. The nitrogen-containing liner preferably contacts the active region of a device, such as a transistor, located adjacent to the trench.
Abstract:
A strained channel transistor and method for forming the the strained channel transistor including a semiconductor rate; a gate dielectric overlying a channel region; a gate rode overlying the gate dielectric; source drain extension regions and source and drain (S/D) regions; wherein a sed dielectric portion selected from the group consisting of r of stressed offset spacers disposed adjacent the gate rode and a stressed dielectric layer disposed over the gate rode including the S/D regions is disposed to exert a strain channel region.
Abstract:
A semiconductor device 10 includes a substrate 12 (e.g., a silicon substrate) with an insulating layer 14 (e.g., an oxide such as silicon dioxide) disposed thereon. A first semiconducting material layer 16 (e.g., SiGe) is disposed on the insulating layer 14 and a second semiconducting material layer 18 (e.g., Si) is disposed on the first semiconducting material layer 16. The first and second semiconducting material layers 16 and 18 preferably have different lattice constants such that the first semiconducting material layer 16 is compressive and the second semiconducting material layer is tensile 18.
Abstract:
A semiconductor isolation trench includes a substrate and a trench formed therein. The trench is lined with a nitrogen-containing liner and filled with a dielectric material. The nitrogen-containing liner preferably contacts the active region of a device, such as a transistor, located adjacent to the trench.
Abstract:
A semiconductor device includes a substrate, a first epitaxial layer, a second epitaxial layer, a third epitaxial layer, a first trench, and a second trench. The first epitaxial layer is formed on the substrate. The first layer has lattice mismatch relative to the substrate. The second epitaxial layer is formed on the first layer, and the second layer has lattice mismatch relative to the first layer. The third epitaxial layer is formed on the second layer, and the third layer has lattice mismatch relative to the second layer. Hence, the third layer may be strained silicon. The first trench extends through the first layer. The second trench extends through the third layer and at least partially through the second layer. At least part of the second trench is aligned with at least part of the first trench, and the second trench is at least partially filled with an insulating material.