摘要:
An apparatus, system, and method are disclosed for storage space recovery in solid-state storage. A sequential storage module sequentially writes data packets in a storage division. The storage division includes a portion of a solid-state storage. The data packets are derived from an object. The data packets are sequentially stored by order of processing. A storage division selection module selects a storage division for recovery. A data recovery module reads valid data packets from the storage division selected for recovery, queues the valid data packets with other data packets to be written sequentially, and updates an index with a new physical address of the valid data. The index includes a mapping of physical addresses of data packets to object identifiers. A storage division recovery module marks the storage division selected for recovery as available for sequentially writing data packets in response to completing copying valid data from the storage division.
摘要:
An apparatus, system, and method are disclosed for data storage with progressive redundant array of independent drives (“RAID”). A storage request receiver module, a striping module, a parity-mirror module, and a parity progression module are included. The storage request receiver module receives a request to store data of a file or of an object. The striping module calculates a stripe pattern for the data. The stripe pattern includes one or more stripes, and each stripe includes a set of N data segments. The striping module writes the N data segments to N storage devices. Each data segment is written to a separate storage device within a set of storage devices assigned to the stripe. The parity-mirror module writes a set of N data segments to one or more parity-mirror storage devices within the set of storage devices. The parity progression module calculates a parity data segment on each parity-mirror device in response to a storage consolidation operation, and stores the parity data segments. The storage consolidation operation is conducted to recover storage space and/or data on a parity-mirror storage device.
摘要:
The invention includes a proxy request receiver module and a proxy request command module. The proxy request receiver module executes on a designated command proxy host and receives a proxy request from a requesting host. The requesting host is one of two or more hosts. Each of the hosts executes an operating system independent from the other hosts and a shared device. One of the hosts is designated as the command proxy host. A system bus connects the hosts and shared device. The proxy request includes a control request to be executed by the shared device sufficient to configure the shared device for a data transfer between the requesting host and shared device independent of the command proxy host. The control request is free of data. The proxy request command module transmits the control request to the shared device.
摘要:
An apparatus, system, and method are disclosed for improving performance in a non-volatile solid-state storage device. Non-volatile solid-state storage media includes a plurality of storage cells. An input module receives source data for storage in the plurality of storage cells of the non-volatile solid-state storage media. Some or all of the bits of the source data are transformed to take into account a voltage level of an empty state of the plurality of storage cells. A write module writes the transformed source data to the plurality of storage cells of the non-volatile solid-state storage media.
摘要:
An apparatus, system, and method are disclosed for reconfiguring an array of solid-state storage elements protected using parity data. The storage element error module determines that one or more storage elements are unavailable to store data (“unavailable storage elements”). The storage element resides in an array with N number of storage elements storing a first ECC chunk and P number of storage elements storing first parity data. The reconfigure data read module reads data from storage elements other than the unavailable storage elements. The data regeneration module uses the first parity data to regenerate missing data from the first ECC chunk. The data reconfiguration module creates a second ECC chunk. The new configuration storage module stores a portion of the second ECC chunk and associated second parity data on (N+P)−Z number of storage elements, wherein 1≦Z≦P.
摘要:
An apparatus, system, and method are disclosed for improving performance in a non-volatile solid-state storage device. Non-volatile solid-state storage media includes a plurality of storage cells. The plurality of storage cells is configured such that storage cells in an empty state store initial binary values that satisfy a bias. An input module receives source data for storage in the plurality of storage cells of the non-volatile solid-state storage media. Bits of the source data have a source bias that is different from the bias of the plurality of storage cells. A bit biasing module biases the bits of the source data toward the bias of the plurality of storage cells. A write module writes the biased source data to the plurality of storage cells of the non-volatile solid-state storage media.
摘要:
An apparatus, system, and method are disclosed for detecting and replacing failed data storage. A read module reads data from an array of memory devices. The array includes two or more memory devices and one or more extra memory devices storing parity information from the memory devices. An ECC module determines, using an error correcting code (“ECC”), if one or more errors exist in tested data and if the errors are correctable using the ECC. The tested data includes data read by the read module. An isolation module selects a memory device in response to the ECC module determining that errors exists in the data read by the read module and that the errors are uncorrectable using the ECC. The isolation module also replaces data read from the selected memory device with replacement data and available data wherein the tested data includes the available data combined with the replacement data.
摘要:
An apparatus, system, and method are disclosed for validating that correct data is read from a storage device. A read request receiver module receives a read storage request to read a data segment of a file or object stored on a data storage device. The storage request includes one or more source parameters for the data segment. The source parameters include one or more virtual addresses that identify the data segment. A hash generation module generates one or more hash values from the virtual addresses. A read data module reads the requested data segment and returns one or more data packets and corresponding stored hash values stored with the data packets. The stored hash values were generated from a data segment written to the data storage device that contains data of the data packets. A hash check module verifies that the generated hash values match the respective stored hash values.
摘要:
An apparatus, system, and method are disclosed for allocating non-volatile storage. The storage device may present a logical address, which may exceed a physical storage capacity of the device. The storage device may allocate logical capacity in the logical address space. An allocation request may be allowed when there is sufficient unassigned and/or unallocated logical capacity to satisfy the request. Data may be stored on the non-volatile storage device by requesting physical storage capacity. A physical storage request, such as a storage request or physical storage reservation, when there is sufficient available physical storage capacity to satisfy the request. The device may maintain an index to associate logical identifiers (LIDs) in the logical address space with storage locations on the storage device. This index may be used to make logical capacity allocations and/or to manage physical storage space.
摘要:
An apparatus, system, and method are disclosed for ensuring data validity in a data storage process. A data receiver module receives a storage block and existing parity information. An ECC generation module generates error correcting code (“ECC”) check bits for the data of the storage block in response to receiving the storage block and the existing parity information. The ECC check bits for the storage block are generated using a block code, a convolutional code, etc. A pre-storage consistency module uses the data of the storage block, the existing parity information, and the ECC check bits to determine if the data of the storage block, the existing parity information, and the ECC check bits are consistent. A data storage module stores the data of the storage block and the ECC check bits the data storage device without storing the existing parity information.