摘要:
Disclosed are hemodialysis and similar dialysis systems including fluid flow circuits. Hemodialysis systems may include a blood flow path, and a dialysate flow path including balancing, mixing, and/or a directing circuits. Preparation of dialysate may be decoupled from patient dialysis. Circuits may be defined within one or more cassettes. The fluid circuit and/or the various fluid flow paths may be isolated from electrical components. A gas supply may be provided that, when activated, is able to urge dialysate through the dialyzer and blood back to the patient. Such a system may be useful during a power failure. The hemodialysis system may also include fluid handling devices, such as pumps, valves, mixers, etc., actuated using a control fluid. The control fluid may be delivered to the fluid handling devices using a detachable external pump. The fluid handling devices may have a spheroid shape with a diaphragm dividing it into two compartments.
摘要:
Certain types of reciprocating positive-displacement pumps (which may be referred to hereinafter as “pods,” “pump pods,” or “pod pumps”) are used to pump fluids, such as a biological fluid (e.g., blood or peritoneal fluid), a therapeutic fluid (e.g., a medication solution), or a surfactant fluid. The pumps may be configured specifically to impart low shear forces and low turbulence on the fluid as the fluid is pumped from an inlet to an outlet. Such pumps may be particularly useful in pumping fluids that may be damaged by such shear forces (e.g., blood, and particularly heated blood, which is prone to hemolysis) or turbulence (e.g., surfactants or other fluids that may foam or otherwise be damaged or become unstable in the presence of turbulence).
摘要:
The present invention generally relates to hemodialysis and similar dialysis systems, including a variety of systems and methods that would make hemodialysis more efficient, easier, and/or more affordable. One aspect of the invention is generally directed to new fluid circuits for fluid flow. In one set of embodiments, a hemodialysis system may include a blood flow path and a dialysate flow path, where the dialysate flow path includes one or more of a balancing circuit, a mixing circuit, and/or a directing circuit. Preparation of dialysate by the preparation circuit, in some instances, may be decoupled from patient dialysis. In some cases, the circuits are defined, at least partially, within one or more cassettes, optionally interconnected with conduits, pumps, or the like. In one embodiment, the fluid circuit and/or the various fluid flow paths may be at least partially isolated, spatially and/or thermally, from electrical components of the hemodialysis system. In some cases, a gas supply may be provided in fluid communication with the dialysate flow path and/or the dialyzer that, when activated, is able to urge dialysate to pass through the dialyzer and urge blood in the blood flow path back to the patient. Such a system may be useful, for example, in certain emergency situations (e.g., a power failure) where it is desirable to return as much blood to the patient as possible. The hemodialysis system may also include, in another aspect of the invention, one or more fluid handling devices, such as pumps, valves, mixers, or the like, which can be actuated using a control fluid, such as air. In some cases, the control fluid may be delivered to the fluid handling devices using an external pump or other device, which may be detachable in certain instances. In one embodiment, one or more of the fluid handling devices may be generally rigid (e.g., having a spheroid shape), optionally with a diaphragm contained within the device, dividing it into first and second compartments.
摘要:
A cardiopulmonary bypass system utilizing membrane-based reciprocating positive displacement blood pumps (“pod pumps”). In one aspect, the pod pumps are constructed to provide reduced shear forces on the blood being pumped. In another aspect blood flow through the pod pumps can be controlled by a controller using information from pressure sensors in the control chamber of the pod pumps. In another aspect, the pod pumps are included on a disposable unit that can be received and held by a receptacle means on a base unit, the base unit also providing pressurized control fluid to the pod pumps on the disposable unit through the receptacle means.
摘要:
Embodiments of the present invention relate generally to heat-exchanger systems that can be used to heat or cool a fluid such as blood. Pod pumps that provide low shear and low turbulence may be used in such systems, particularly for systems that pump blood. A certain heat-exchanger system used to heat blood or other fluids may be used to provide whole-body hyperthermic treatments or regional hyperthermic chemotherapy treatments. A disposable unit may be used to separate the fluid path from the fluid control systems. The disposable unit typically includes a heat-exchanger component that is received by a corresponding heat exchanger in a base unit. Fluid pumped through the heat-exchanger component is heated by the heat exchanger.
摘要:
A system and method for locking a door. An assembly has a first engagement surface. A door is coupled to the assembly, the door including a latch member having a second engagement surface for engaging the first engagement surface. A movable member is capable of generating a force against at least one of the assembly and the door to press together and substantially prevent disengagement of the first engagement surface and the second engagement surface.
摘要:
A fluid handling cassette (24), such as that useable with an APD cycler device or other infusion apparatus, may include a generally planar body having at least one pump chamber (181) formed as a depression in a first side of the body and a plurality of flowpaths for fluid that includes a channel. A patient line port may be arranged for connection to a patient line (34) and be in fluid communication with the at least one pump chamber via at least one flowpath, and an optional membrane (15) may be attached to the first side of the body over the at least one pump chamber. In one embodiment, the membrane may have a pump chamber portion (151) with an unstressed shape that generally conforms to the pump chamber depression in the body and is arranged to be movable for movement of fluid in the useable space of the pump chamber. One or more spacers (50) may be provided in the pump chamber to prevent a pump membrane from contacting an inner wall of the pump chamber. Patient, drain (28) and/or heater bag lines (26) may be positioned to be separately occludable in relation to one or more solution lines (30) that are connectable to the cassette.