Abstract:
A sensor apparatus and sensor apparatus system for use in conjunction with a cassette, including a disposable or replaceable cassette. In some embodiments, the cassette includes a thermal well for permitting the sensing of various properties of a subject media. The thermal well includes a hollow housing of a thermally conductive material. In other embodiments, the cassette includes sensor leads for sensing of various properties of a subject media. The thermal well has an inner surface shaped so as to form a mating relationship with a sensing probe. The mating thermally couples the inner surface with a sensing probe. In some embodiments, the thermal well is located on a disposable portion and the sensing probe on a reusable portion.
Abstract:
A cassette integrated system. The cassette integrated system includes a mixing cassette, a balancing cassette, a middle cassette fluidly connected to the mixing cassette and the balancing cassette and at least one pod. The mixing cassette is fluidly connected to the middle cassette by at least one fluid line and the middle cassette is fluidly connected to the balancing cassette by at least one fluid line. The at least one pod is connected to at least two of the cassettes wherein the pod is located in an area between the cassettes.
Abstract:
A sensing probe is described. The sensing probe includes a probe housing having a probe tip. A thermal sensor in the housing is also included. The thermal sensor has a sensing end and a connector end, where the sensing end is thermally coupled to the probe tip. Also included are at least two leads. The leads transfer electrical signals that are used to determine temperature and conductivity. Also included is a thermal well. The thermal well includes a hollow housing of a thermally conductive material. The housing has an outer surface and an inner surface. The inner surface is a predetermined shape so as to form a mating relationship with a sensing probe. The mating thermally couples the inner surface with a sensing probe. In some embodiments, the thermal well is located on a disposable portion and the sensing probe on a reusable portion.
Abstract:
The present invention generally relates to hemodialysis and similar dialysis systems, including a variety of systems and methods that would make hemodialysis more efficient, easier, and/or more affordable. One aspect of the invention is generally directed to new fluid circuits for fluid flow. In one set of embodiments, a hemodialysis system may include a blood flow path and a dialysate flow path, where the dialysate flow path includes one or more of a balancing circuit, a mixing circuit, and/or a directing circuit. Preparation of dialysate by the preparation circuit, in some instances, may be decoupled from patient dialysis. In some cases, the circuits are defined, at least partially, within one or more cassettes, optionally interconnected with conduits, pumps, or the like. In one embodiment, the fluid circuit and/or the various fluid flow paths may be at least partially isolated, spatially and/or thermally, from electrical components of the hemodialysis system. In some cases, a gas supply may be provided in fluid communication with the dialysate flow path and/or the dialyzer that, when activated, is able to urge dialysate to pass through the dialyzer and urge blood in the blood flow path back to the patient. Such a system may be useful, for example, in certain emergency situations (e.g., a power failure) where it is desirable to return as much blood to the patient as possible. The hemodialysis system may also include, in another aspect of the invention, one or more fluid handling devices, such as pumps, valves, mixers, or the like, which can be actuated using a control fluid, such as air. In some cases, the control fluid may be delivered to the fluid handling devices using an external pump or other device, which may be detachable in certain instances. In one embodiment, one or more of the fluid handling devices may be generally rigid (e.g., having a spheroid shape), optionally with a diaphragm contained within the device, dividing it into first and second compartments.
Abstract:
A pump cassette is disclosed. The pump cassette includes housing. The housing includes at least one fluid inlet line and at least one fluid outlet line. Also, the cassette includes at least one reciprocating pressure displacement membrane pump within the housing. The pressure pump pumps at least one fluid from the fluid inlet line to at least one of the fluid outlet line. Also, the cassette includes at least one mixing chamber within the housing. The mixing chamber is fluidly connected to the fluid outlet line.
Abstract:
A pump cassette is disclosed. The pump cassette includes a housing having at least, one fluid inlet line and at least one fluid outlet line. The cassette also includes at least one reciprocating pressure displacement membrane pump within the housing. The pressure pump pumps a fluid from the fluid inlet line to the fluid outlet line. A hollow spike is also included on the housing as well as at least one metering pump The metering pump is fluidly connected to the hollow spike on the housing and to a metering pump fluid line. The metering pump fluid line is fluidly connected to the fluid outlet line.
Abstract:
A system, device, and method for mixing a substance with a liquid pumps the liquid into a container of the substance to produce a solution. The container may be part of a container assembly including a port assembly for coupling with the container to produce an inlet and/or and outlet port for the container. The container assembly may be received within a receiving chamber for causing the coupling. The solution may be permitted to flow out of the outlet port when the solution rises within the container to a level of the outlet port so that the substance is partially diluted before flowing out of the outlet port.
Abstract:
A method for packaging an agent for delivery within a body cavity. A reservoir within a package contains a specified quantity of the agent and is either contiguous with, or coupled to, a dispensing node such as a swab. Depth of insertion of the dispensing node into the body cavity is restricted to a specified depth by a penetration-restricting feature that forms part of the package.
Abstract:
A bezel and bezel assembly in which the bezel is a rigid block with a plurality of cavities. A depression in the block has ribs extending up therefrom to form an elevated contour. The depression includes at least one cavity therein for the application of air pressure into the depression and over the elevated contour. A gasket fits over the bezel so that positive pressure applied through the at least one cavity in the depression forces a gasket membrane to expand away from the pumping side and negative pressure applied through the at least one cavity in the depression pulls the gasket membrane against the elevated contour of the ribs. The bezel may include solvent bondable tubing connections for making pneumatic connections to the bezel.
Abstract:
A medical device for delivery of a fluid to a patient from a line terminating in a tubing needle. The medical device includes a cannula assembly for coupling the fluid into a cannula that is inserted into the patient. The cannula assembly has a first locking element disposed in a fixed position with respect to the cannula. Coupling the line to the cannula assembly is an infusion flap. The infusion flap includes a second locking element for engaging the first locking element of the cannula assembly and a lift tab for disconnecting the infusion flap from the cannula assembly. Coupling of the first and second locking elements requires initial mating of the infusion flap and cannula assembly followed by locking through rotation of the infusion flap with respect to the cannula assembly.