摘要:
An electron beam apparatus is provided for reliably measuring a potential contrast and the like at a high throughput in a simple structure. The electron beam apparatus for irradiating a sample, such as a wafer, formed with a pattern with an electron beam to evaluate the sample comprises an electron-optical column for accommodating an electron beam source, an objective lens, an E×B separator, and a secondary electron beam detector; a stage for holding the sample, and relatively moving the sample with respect to the electron-optical column; a working chamber for accommodating the stage and capable of controlling the interior thereof in a vacuum atmosphere; a loader for supplying a sample to the stage; a voltage applying mechanism for applying a voltage to the sample, and capable of applying at least two voltages to a lower electrode of the objective lens; and an alignment mechanism for measuring a direction in which dies are arranged on the sample. When the sample is evaluated, a direction in which the stage is moved is corrected to align with the direction in which the dies are arranged.
摘要:
An electron beam apparatus comprises a TDI sensor 64 and a feed-through device 50. The feed-through device has a socket contact 54 for interconnecting a pin 52 attached to a flanged 51 for separating different environments and the other pin 53 making a pair with the pin 52, in which the pin 52, the other pin 53 and the socket contact 54 together construct a connecting block, and the socket contact 54 has an elastic member 61. Accordingly, even if a large number of connecting blocks are provided, the connecting force may be kept to such a low level as to prevent the breakage in the sensor. The pin 53 is connected with the TDI sensor 64, in which a pixel array has been adaptively configured based on the optical characteristic of an image projecting optical system. That sensor has a number of integration stages that can reduce the field of view of the image projecting optical system to as small as possible so that a maximal acceptable distortion within the field of view may be set larger. Further, the number of integration stage may be determined such that the data rate of the TDI sensor would not be reduced but the number of pins would not be increased as much as possible. Preferably, the number of line count may be almost equal to the number of integration stages.
摘要:
[Problem] To adjust astigmatism quickly with a simple algorithm by utilizing an autofocus estimation value of an image obtained from a pattern formed on a sample. [Means] A charged particle beam apparatus 300 for observing and estimating a sample W by applying a charged particle beam to sample W to detect secondary charged particles, such as electrons emitted from the sample, reflected electrons and backscattered electrons comprises astigmatism adjusting means 17 for adjusting astigmatism of the charged particle beam. Astigmatism adjusting means 17 is supplied with a correction voltage which maximizes a focus estimation value obtained from a pattern formed on sample W. Astigmatism adjusting means 17 is a multipole including a plurality of pairs of electrodes or coils facing each other to place the optical axis of the charged particle beam at the center. Also disclosed is a charged particle beam apparatus 400 capable of observation and estimation of a sample surface in a condition where no charge up exists over the whole sample W.
摘要:
An apparatus capable of detecting defects of a pattern on a sample with high accuracy and reliability and at a high throughput, and a semiconductor manufacturing method using the same are provided. The electron beam apparatus is a mapping-projection-type electron beam apparatus for observing or evaluating a surface of the sample by irradiating the sample with a primary electron beam and forming on a detector an image of reflected electrons emitted from the sample. An electron impact-type detector such as an electron impact-type CCD or an electron impact-type TDI is used as the detector for detecting the reflected electrons. The reflected electrons are selectively detected from an energy difference between the reflected electrons and secondary electrons emitted from the sample. To eliminate charge-up caused on the sample surface by irradiation with the primary electron beam, the surface of the sample is covered with a cover placed above the sample and a gas is supplied to the space above the sample covered with the cover. The gas is brought into contact with the sample surface to reduce charge-up on the sample surface.
摘要:
Provided is an electron beam system, in which an electron beam emitted from an electron gun is irradiated to a stencil mask, and the electron beam that has passed through the stencil mask is magnified by an electron lens and then detected by a detector having a plurality of pixels so as to form an image of the sample. Further provided is an electron beam system, in which a primary electron beam emitted from an electron gun is directed to a sample surface of a sample prepared as a subject to be inspected, and an electron image formed by a secondary electron beam emanated from the sample is magnified and detected, wherein an NA aperture is disposed in a path common to both of the primary electron beam and the secondary electron beam. An electron lens is disposed in the vicinity of a sample surface, and in this arrangement, a crossover produced by the electron gun, the electron lens and the NA aperture may be in conjugate relationships relative to each other with respect to the primary electron beam.
摘要:
An electron beam apparatus is provided for reliably measuring a potential contrast and the like at a high throughput in a simple structure. The electron beam apparatus for irradiating a sample, such as a wafer, formed with a pattern with an electron beam to evaluate the sample comprises an electron-optical column for accommodating an electron beam source, an objective lens, an ExB separator, and a secondary electron beam detector; a stage for holding the sample, and relatively moving the sample with respect to the electron-optical column; a working chamber for accommodating the stage and capable of controlling the interior thereof in a vacuum atmosphere; a loader for supplying a sample to the stage; a voltage applying mechanism for applying a voltage to the sample, and capable of applying at least two voltages to a lower electrode of the objective lens; and an alignment mechanism for measuring a direction in which dies are arranged on the sample. When the sample is evaluated, a direction in which the stage is moved is corrected to align with the direction in which the dies are arranged.
摘要:
Provided is a method and an apparatus for inspecting a sample surface with high accuracy. Provided is a method for inspecting a sample surface by using an electron beam method sample surface inspection apparatus, in which an electron beam generated by an electron gun of the electron beam method sample surface inspection apparatus is irradiated onto the sample surface, and secondary electrons emanating from the sample surface are formed into an image toward an electron detection plane of a detector for inspecting the sample surface, the method characterized in that a condition for forming the secondary electrons into an image on a detection plane of the detector is controlled such that a potential in the sample surface varies in dependence on an amount of the electron beam irradiated onto the sample surface.
摘要:
Provided is a method and an apparatus for inspecting a sample surface with high accuracy. Provided is a method for inspecting a sample surface by using an electron beam method sample surface inspection apparatus, in which an electron beam generated by an electron gun of the electron beam method sample surface inspection apparatus is irradiated onto the sample surface, and secondary electrons emanating from the sample surface are formed into an image toward an electron detection plane of a detector for inspecting the sample surface, the method characterized in that a condition for forming the secondary electrons into an image on a detection plane of the detector is controlled such that a potential in the sample surface varies in dependence on an amount of the electron beam irradiated onto the sample surface.
摘要:
An electron beam apparatus comprises a TDI sensor (64) and a feed-through device (50). The feed-through device has a socket contact (54) for interconnecting a pin (52) attached to a flanged (51) for separating different environments. The other pin (53) making a pair with the pin (52) and the socket contact (54) together construct a connecting block, and the socket contact (54) has an elastic member (61). The pin (53) is connected with the TDI sensor (64), in which a pixel array has been adaptively configured based on the optical characteristic of an image projecting optical system. That sensor has a number of integration stages that can reduce the field of view of the image projecting optical system. Further, the number of integration stage may be determined such that the data rate of the TDI sensor would not be reduced but the number of pins would not be increased as much as possible. Preferably, the number of line count may be almost equal to the number of integration stages.
摘要:
A detecting apparatus for detecting a fine geometry on a surface of a sample, wherein an irradiation beam is irradiated against the sample placed in a different environment different from an atmosphere and a secondary radiation emanated from the sample is detected by a sensor, and wherein the sensor is disposed at an inside of the different environment, a processing device to process detection signals from the sensor is disposed at an outside of the different environment, and a transmission means transmits detection signals from the sensor to the processing device.