Abstract:
The expression of Her-2/neu protein on circulating cancer cells in a sample of blood or peripheral blood mononuclear cells (PBMCs) is detected by performing a sensitive Her-2/neu immunoassay. There is no need to isolate the cancer cells before performing the immunoassay. A positive result indicates the expression of Her-2/neu on cancer cells in the blood sample. This method can be used to identify cancer patients who are likely to benefit from treatment with an anticancer agent that targets Her-2/neu, such as trastuzumab (HERCEPTIN), lapatinib, CP-724,714, NKI-272, and BMS-599626
Abstract:
A light emitting device firstly includes a light emitting diode (LED) structure, having a top surface with a light emitting region. The device also has a heterojunction within the device structure, the heterojunction having a p-type and an n-type semiconductor layer, and a plurality of electrodes positioned on the top surface, each being electrically connected to one of the p-type and n-type semiconductor layers. At least a first and a second electrodes are connected to a same type semiconductor layer and are physically separated from each other. The device further includes a first and a second heterojunction regions within the heterojunction, each being respectively defined between one of the first and second electrodes and one of the other electrodes connected to the other type semiconductor layer. The first and second heterojunction regions are alternatively driven for emitting lights in the time domain.
Abstract:
The expression of a steroid receptor from circulating carcinoma cells in a blood sample is detected by isolating the carcinoma cells from the blood sample, making an extract from the isolated carcinoma cells and then performing on the extract a sensitive immunoassay capable of detecting the carcinoma cell-associated steroid receptor. A positive result indicates the presence of the steroid receptor in the carcinoma cells. This method can be used to identify cancer patients who are likely to benefit from treatment with an endocrine therapeutic agent.
Abstract:
An alumina substrate and method of making an alumina substrate using oxidation is provided. Generally, photoresist masks are used to protect selected areas of an aluminum layer. The unprotected or exposed areas of the aluminum layer are then oxidized during a photolithography process. The protected, unexposed areas of the aluminum layer retain their conductive properties while the oxidized areas are converted to alumina, or aluminum oxide, which is non-conductive. Accordingly, an alumina substrate having conductive areas of aluminum is formed. In one embodiment, the alumina substrate includes an alumina layer, one or more aluminum vias formed within the alumina layer, each of the one or more aluminum vias extending between the bottom of the alumina layer and the top of the alumina layer, wherein the one or more aluminum vias are integrally formed within the alumina layer.
Abstract:
A remote-controllable lighting device comprising a first substrate and an adjacent second substrate maintained in a spaced apart relationship to allow airflow therebetween and at least partly overlapping each other, at least the second substrates carrying thereon at least one emission sources, the first substrate being located towards a proximal end of the device and the second substrate being located towards a distal end of the device; said first substrate being arranged so as to allow light generated by the at least one located second light emission source to pass thereby in a direction defining a primary light emission direction and said first light emission source located so as to emit light in said primary light emission direction; said first and second substrate being in thermal communication so as to allow heat generated by the at least one light emission sources to flow between the substrates so as to provide thermal distribution between the substrates, the first and second substrate being formed of a thermally conductive material suitable for convection of the generated heat therefrom; a signal detector for receiving a wirelessly transmitted control signal from a remote control device; said signal receiver being located proximal of the first substrate in the primary light emission direction; and a controller in communication with said signal detector and the light emission sources and for controlling at least one characteristic of at least one light emission source responsive to said control signal.
Abstract:
A light-emitting assembly comprising a lens, a first optical source, a second optical source and a third optical source, wherein the lens is disposed forward of said first, second and third optical sources; the third optical source is intermediate the first and second optical sources; and the lens and the first, second and third optical sources are arranged so that light emitted from the first and second optical sources merges at the third optical source after undergoing internal reflection at the lens.
Abstract:
A light source includes a light emitting diode (LED) module having a continuous substrate, a layer of n-type semiconductor material formed above the substrate, and a layer of p-type semiconductor material formed above the n-type semiconductor material. A p-n junction is formed between the p-type and n-type semiconductor materials. The p-type and n-type semiconductor materials are selected to emit light at the p-n junction when an electric current flows through the p-n junction. The LED module includes a plurality of electric contacts connected to the p-type semiconductor material, and at least one electric contact connected to the n-type semiconductor material. The electric contacts are configured to pass electric current through a plurality of regions in the p-n junction such that the plurality of regions have higher electric current densities and emit light brighter than areas outside of the plurality of regions.
Abstract:
In an H-ARQ system, when the AN is receiving packet data traffic on the RL from an AT and is generating ACKs and NAKs according to the ability of the AN to properly decode such data, the AN gates-off a DRCLock bit within in a sub-packet duration in which an ACK is transmitted on the FL MAC channel. When it receives an ACK, the AT ignores the non-transmitted DRCLock bit in a current sub-packet duration, and assumes that the DRC channel is “good”. When the AN sends a NAK to the AT, it also sends the DRCLock bit. When the AT receives a NAK in a sub-packet duration, it reads and processes whatever DRCLock bit is received during that sub-packet duration. When no data traffic is transmitted on the RL traffic channel, corresponding DRCLock bits are not gated-off by the AN and are transmitted to the AT. The AT then processes the received DRCLock bits. In an alternative embodiment, transmission of DRCLock is totally eliminated.
Abstract:
A phase shift mask comprises a transparent substrate having a patterned opaque material layer formed thereupon to form a non-transmissive region of the transparent substrate and an adjoining transmissive region of the transparent substrate. A pit is formed within the transmissive region of the transparent substrate. The pit has a stepped sidewall such as to provide the phase shift mask with enhanced optical performance. The phase shift mask may be fabricated employing a self aligned method.
Abstract:
The present invention relates to topical compositions containing fermented extracts of Traditional Chinese Medicinal (TCM) ingredients for improving the appearance and skin condition of the user. The topical compositions of the present invention are tailored for different users of different skin compositions according to TCM principles. The fermented TCM extracts are characterized by reduced odor and/or color in comparison with unfermented TCM extracts and are therefore more suitable for use in cosmetic products.