Abstract:
An AC-to-DC power supply apparatus and a power control structure and method thereof are provided. The provided method includes: making an AC-to-DC converter in the AC-to-DC power supply apparatus convert an AC input voltage in response to a driving signal, so as to generate a DC output voltage; sampling a rectified voltage relating to the AC input voltage, so as to provide a sampling signal; providing an output feedback signal relating to an output of the AC-to-DC converter; multiplying the sampling signal by the output feedback signal, so as to provide a product signal; performing a signal modulation on the product signal, so as to generate the driving signal to control a switching of a main power switch in the AC-to-DC converter; and performing an amplitude-limiting process on the sampling signal or the product signal.
Abstract:
Systems, methods, and devices for column inversion are provided. In one example, an electronic display may include a display panel having columns of pixels and display driver circuitry. The display driver circuitry may include source amplifiers and demultiplexers. Each demultiplexer may channel data output by at least one source amplifier to one of three columns of pixels. The display driver circuitry may drive the display panel according to a 3-column inversion scheme using one source amplifier per demultiplexer per frame of image data.
Abstract:
A non-isolated inverter including a DC input-side, a capacitor connected in parallel with the DC input-side, an AC output-side connected in parallel with a load, and first and second bridge-arm units is provided. The first and second bridge-arm units are connected in parallel with the capacitor. The first bridge-arm unit includes a series forward-connection of upper and lower switch-elements, where a common-node of upper and lower switch-elements and a supplying terminal of the second bridge-arm unit are respectively connected to two terminals of the AC output-side. The upper and lower switch-elements are respectively turned on in positive and negative half cycles of an output current of the non-isolated inverter, and the generation of common-mode currents in the non-isolated inverter is suppressed under a clamping action between the upper and lower switch-elements due to there are no high-frequency voltages on the parasitic-capacitors from the non-isolated inverter to the ground.
Abstract:
Apparatus for controlling gas distribution are provided. In some embodiments, apparatus for controlling gas distribution may include a first flow path from an inlet to a first outlet; a plurality of first orifices disposed within the first flow path; a plurality of first valves that control gas flow through the plurality of first orifices to control a total gas flow at the first outlet; a second flow path from the inlet to a second outlet; a plurality of second orifices disposed along the second flow path; a plurality of second valves that control gas flow through respective ones of the plurality of second orifices to control a total gas flow at the second outlet; and a mounting block having the plurality of first valves and second valves coupled thereto, wherein at least a portion of the first flow path and the second flow path is disposed within the mounting block.
Abstract:
An isolated gate driver including a driving control circuit, an isolated transformer, an anti-circuit and a secondary processing circuit is provided. The driving control circuit is configured to generate a driving PWM signal for driving a power switch tube. The isolated transformer has a primary winding and a secondary winding. The anti-circuit is connected between the driving control circuit and the primary winding of the isolated transformer, and is configured to suppress a variation of an induced voltage in the secondary winding of the isolated transformer when a duty cycle of the driving PWM signal is sharply decreased. The secondary processing circuit is connected in parallel with the secondary winding of the isolated transformer, and is configured to perform a voltage clamping action on a gate-source voltage of the power switch tube when the duty cycle of the driving PWM signal is sharply decreased.
Abstract:
The present invention provides a method of superimposing data signals and reference signals in a space division multiple access communication system, a base station of the communication system transmitting the first layer resource block and another layer resource block to a terminal using the same time/frequency resources, reference signals in the first layer resource block and reference signals in the other layer resource block being orthogonal to each other, the method including superimposing data signals transmitted in the first layer resource block at positions of reference signals in the first layer resource block, making a spreading sequence of the superimposed data signals orthogonal to a spreading sequence of the reference signals in the first layer resource block. The present invention can effectively use resources consumed under a multiuser MIMO system and drastically improve the system performance.
Abstract:
A high viscosity aqueous inkjet ink that is useful in ink jet printers. The ink comprises heat activated colorant solids that are not heat activated during the printing process, and are printed onto a substrate in the form of an image that can be transferred onto a subsequent or final substrate by applying heat and intimate contact between the two substrates. The ink can also be heat activated onto the substrate without further transfer by applying heat at the temperature that is suitable for the activation of the colorant.
Abstract:
Disclosed are compounds of Formula 1, N-oxides, and salts thereof, wherein X is O or S; Y is O or S; A is O, S, NR3e or C(R3c)═C(R3d); Z is a direct bond, O, S(O)n, NR6, C(R7)2O, OC(R7)2, C(═X1), C(═X1)E, EC(═X1), C(═NOR8) or C(═NN(R6)2); a is 1, 2 or 3; and R1, R2, R3a-R3e, R4, R5, R6, R7, R8, X1 and E are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound or a composition of the invention.
Abstract:
Methods for processing substrates in twin chamber processing systems having first and second process chambers and shared processing resources are provided herein. In some embodiments, a method may include providing a substrate to the first process chamber of the twin chamber processing system, wherein the first process chamber has a first processing volume that is independent from a second processing volume of the second process chamber; providing one or more processing resources from the shared processing resources to only the first processing volume of the first process chamber; and performing a process on the substrate in the first process chamber.
Abstract:
Provided is reporting one or more long term CSI components to an eNode B, wherein at least one long term CSI component being reported with multiple values; and reporting a transmission scheme assumption indicator (TSAI) together with a set of short term CSI components to the eNode B, wherein the TSAI indicating the eNode B of a value of the multiple values of the at least one long term CSI component to be currently used and of the set of short term CSI components being conditioned on the value indicated by the TSAI, wherein the short term CSI components being reported more frequently.