Abstract:
There is provided is a stereo headphone provided with a pair of earphones having a cartilage conduction unit, a sheath unit connected to the cartilage conduction unit, and a piezoelectric bimorph of a vibration source connected to the cartilage conduction unit covered by the sheath unit without making contact with the inner wall thereof. The cartilage conduction unit is an elastic body. The cartilage conduction unit is in contact with the entrance to the external auditory meatus and has a passage hole in communication with the external auditory meatus. The vibration source is supported by a thick portion on the tragus side at the periphery of the passage hole. In accordance with a more specific feature, the thick portion is provided. The outer shape of the sheath has a thickness in the direction of the earhole that is less than the thickness in the direction orthogonal thereto.
Abstract:
Provided is a wristwatch provided with a display unit with which the top and bottom of a display can be inverted when being observed, and vibration transferring units for cartilage conduction provided respectively in the vicinity of the distal end of the radius and in a part in contact with the distal end of the ulna when being worn. The wristwatch is provided with an operating portion which is located at the back of the hand when being worn. The orientation whereby the top and bottom of the display unit are in an upright condition is determined on the basis of an acceleration detected by an acceleration detecting unit, and a determination is performed on the basis of a mean value of gravitational acceleration to determine whether the wristwatch is being worn with the operating portion facing up or down.
Abstract:
A mobile telephone has a front wall, a rear wall, a top wall partly continuous with a side face, and a side wall, and includes a vibration-absorbing member between the top wall and each of the rear wall and the side wall, and a cartilage conduction vibration source on the inner side of the top wall. Opposite corner parts of the top wall partly continuous with the side face each serve as a cartilage conduction unit. Or a mobile telephone has a front wall, a rear wall, a top wall, and a side wall, and includes a cartilage conduction vibration source that has a thin shape, that vibrates in a direction perpendicular to the thin shape, and that is affixed to the middle, in the left/right direction, of the inner side of the top wall in a direction parallel to the thin shape.
Abstract:
The present disclosure describes a projector which has: an image projection portion; an image provision portion that provides a projection image to the image projection portion; a deviation movement detection portion that detects a deviation movement of the image projection portion; and an image process portion that based on detection by the deviation movement detection portion, shifts the image provided by the image provision portion in a direction where the deviation movement is corrected. According to this, even if an image projection function does not include a deviation correction function, it is possible to perform the deviation correction by means of the image process.
Abstract:
A portable visual acuity examination device comprises a mounting unit that can be mounted in front of eyes either using or not using eyeglasses, a visual target displaying unit that uses an organic EL display panel, a display controlling unit that changes the visual target displayed on the displaying unit, an inputting unit for visual target viewing results, and a transmitting unit for measurement results. The portable visual acuity examination device comprises an optical system that can change the distance at which the visual target virtual image is visible. The portable visual acuity examination device detects whether eyeglasses are used and matches an uncorrected vision acuity examination and a corrected vision acuity examination. The portable visual acuity examination device switches between a C-type visual target and an E-type visual target. With data display, both the right and left display units are enabled.
Abstract:
There is provided is a stereo headphone provided with a pair of earphones having a cartilage conduction unit, a sheath unit connected to the cartilage conduction unit, and a piezoelectric bimorph of a vibration source connected to the cartilage conduction unit covered by the sheath unit without making contact with the inner wall thereof. The cartilage conduction unit is an elastic body. The cartilage conduction unit is in contact with the entrance to the external auditory meatus and has a passage hole in communication with the external auditory meatus. The vibration source is supported by a thick portion on the tragus side at the periphery of the passage hole. In accordance with a more specific feature, the thick portion is provided. The outer shape of the sheath has a thickness in the direction of the earhole that is less than the thickness in the direction orthogonal thereto.
Abstract:
Disclosed is a mobile device comprising an acceleration detection unit for detecting acceleration relative to the device; a condition identification unit; and a power supply controller which determines, from a combination of the output of the acceleration detection unit and the output of the condition identification unit, whether or not to begin to supply power to the device.
Abstract:
An information exchanging apparatus capable of exchanging information with a plurality of outside apparatuses has: a first wireless communicator including a telephone transmitter and telephone receiver for wireless telephone communication with one of the outside apparatuses; a second wireless communicator other than the first wireless communicator; a transmitter arranged to transmit original information to the plurality of outside apparatuses through the second wireless communicator; a processor arranged to process response information from the plurality of outside apparatuses to be received through the second wireless communicator in response to the original information; and a distributor arranged to distribute result information from the processor to the plurality of outside apparatuses through the second wireless communicator.
Abstract:
An LED lamp (1) is employed in a state mounted on a lighting fixture. The LED lamp (1) includes an LED source portion (2) including a plurality of LED chips, an illuminance sensor module (12) detecting ambient illuminance, and a controller controlling the LED source portion (2) in response to illuminance of ambient light other than light emitted by the LED source portion (2) on the basis of an output signal received from the illuminance sensor module (12) when the LED source portion (2) is in a lighting-up state. When the LED source portion (2) is in the lighting-up state, there is a possibility that the illuminance sensor module (12) detects not only the ambient light illuminance but also spontaneous light illuminance. The controller eliminates influence by the spontaneous light illuminance, and controls the LED source portion (2) in response to the illuminance of the ambient light.
Abstract:
An illumination device has LEDs, EDLCs for LED use, and a non-volatile memory for recording the difference between the color temperature and/or the illumination spectrum of LEDs and Xe gas. The unused charge in an EDLC is recovered by a power cell. Illumination strength is changed in accordance with the image pickup distance of a DSC. Illumination strength is changed in accordance with exposure time so that a fill-in ratio is maintained. The illumination strength of LEDs is gradually increased and then at the peak strength is suddenly reduced. The mixture ratio of light from LEDs having different light distributions is changed due to focal distance, and then an incidence angle is changed. A group of LEDs is disposed in a ring shape on the front of a lens. During continuous capture, LEDs are caused to illuminate continuously or synchronously.