Abstract:
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed using two epitaxial layers of different lattice constants that are grown over a bulk substrate. A first thin, strained, epitaxial layer may be cut to form strain-relieved base structures for fins. The base structures may be constrained in a strained-relieved state. Fin structures may be epitaxially grown in a second layer over the base structures. The constrained base structures can cause higher amounts of strain to form in the epitaxially-grown fins than would occur for non-constrained base structures.
Abstract:
Methods and structures for forming a localized, strained region of a substrate are described. Trenches may be formed at boundaries of a localized region of a substrate. An upper portion of sidewalls at the localized region may be covered with a covering layer, and a lower portion of the sidewalls at the localized region may not be covered. A converting material may be formed in contact with the lower portion of the localized region, and the substrate heated. The heating may introduce a chemical species from the converting material into the lower portion, which creates stress in the localized region. The methods may be used to form strained-channel finFETs.
Abstract:
A static induction transistor is formed on a silicon carbide substrate doped with a first conductivity type. First recessed regions in a top surface of the silicon carbide substrate are filled with epitaxially grown gate regions in situ doped with a second conductivity type. Epitaxially grown channel regions in situ doped with the first conductivity type are positioned between adjacent epitaxial gate regions. Epitaxially grown source regions in situ doped with the first conductivity type are positioned on the epitaxial channel regions. The bottom surface of the silicon carbide substrate includes second recessed regions vertically aligned with the channel regions and silicided to support formation of the drain contact. The top surfaces of the source regions are silicided to support formation of the source contact. A gate lead is epitaxially grown and electrically coupled to the gate regions, with the gate lead silicided to support formation of the gate contact.
Abstract:
Methods and structures for forming strained-channel FETs are described. A strain-inducing layer may be formed under stress in a silicon-on-insulator substrate below the insulator. Stress-relief cuts may be formed in the strain-inducing layer to relieve stress in the strain-inducing layer. The relief of stress can impart strain to an adjacent semiconductor layer. Strained-channel, fully-depleted SOI FETs and strained-channel finFETs may be formed from the adjacent semiconductor layer. The amount and type of strain may be controlled by etch depths and geometries of the stress-relief cuts and choice of materials for the strain-inducing layer.
Abstract:
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height.
Abstract:
Methods and structures for increasing strain in fully insulated finFETs are described. The finFET structures may be formed on an insulating layer and include source, channel, and drain regions that are insulated all around. During fabrication, the source and drain regions may be formed as suspended structures. A strain-inducing material may be formed around the source and drain regions on four contiguous sides so as to impart strain to the channel region of the finFET.
Abstract:
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height.
Abstract:
The disclosure concerns a method of stressing a semiconductor layer comprising: forming, over a silicon on insulator structure having a semiconductor layer in contact with an insulating layer, one or more stressor blocks aligned with first regions of said semiconductor layer in which transistor channels are to be formed, wherein said stressor blocks are stressed such that they locally stress said semiconductor layer; and deforming second regions of said insulating layer adjacent to said first regions by temporally decreasing, by annealing, the viscosity of said insulator layer.
Abstract:
Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
Abstract:
A tensile strained silicon layer is patterned to form a first group of fins in a first substrate area and a second group of fins in a second substrate area. The second group of fins is covered with a tensile strained material, and an anneal is performed to relax the tensile strained silicon semiconductor material in the second group of fins and produce relaxed silicon semiconductor fins in the second area. The first group of fins is covered with a mask, and silicon-germanium material is provided on the relaxed silicon semiconductor fins. Germanium from the silicon germanium material is then driven into the relaxed silicon semiconductor fins to produce compressive strained silicon-germanium semiconductor fins in the second substrate area (from which p-channel finFET devices are formed). The mask is removed to reveal tensile strained silicon semiconductor fins in the first substrate area (from which n-channel finFET devices are formed).