Abstract:
In various embodiments, tubular sputtering targets are produced by forming a tubular billet at least by pressing molybdenum powder in a mold and sintering the pressed molybdenum powder, working the tubular billet to form a worked billet, and heat treating the worked billet.
Abstract:
Refractory metal powders are dehydrided in a device which includes a preheat chamber for retaining the metal powder fully heated in a hot zone to allow diffusion of hydrogen out of the powder. The powder is cooled in a cooling chamber for a residence time sufficiently short to prevent re-absorption of the hydrogen by the powder. The powder is consolidated by impact on a substrate at the exit of the cooling chamber to build a deposit in solid dense form on the substrate.
Abstract:
In various embodiments, tubular sputtering targets are produced by forming a tubular billet at least by pressing molybdenum powder in a mold and sintering the pressed molybdenum powder, working the tubular billet to form a worked billet, and heat treating the worked billet.
Abstract:
In various embodiments, a metallic structure includes first and second clad structures each comprising a protective layer disposed over a steel layer, a joint joining the steel layers of first and second clad structures, and, directly connecting the protective layers of the first and second clad structures, a layer of metal powder disposed in contact with (i) the joint, (ii) the protective layers of the first and second clad structures, and (iii) a portion of at least one of the steel layers proximate the joint.
Abstract:
The present invention is directed to a process for joining tantalum clad steel structures. The process broadly comprises: a) providing a first tantalum clad section, said first tantalum clad section comprising a tantalum layer over a steel layer, with a bonding layer optionally therebetween, with a portion of said steel layer in an edge region not being covered by said tantalum layer or said bonding layer, b) providing a second tantalum clad section, said second tantalum clad section comprising a tantalum layer over a. steel layer, with a bonding layer optionally therebetween, with a portion of said steel layer in an edge region not being covered by said tantalum layer or said bonding layer, c) locating said steel edge regions adjacent each other, d) welding the steel edge regions together, e) cold spraying a tantalum powder onto the welded edge regions and over the tantalum layers adjacent said edge regions thereby joining the tantalum clad steel sections. The invention is also directed to tantalum welds or joints formed by cold spraying tantalum powder.
Abstract:
Molybdenum titanium sputter targets are provided. In one aspect, the targets are substantially free of the β(Ti, Mo) alloy phase. In another aspect, the targets are substantially comprised of single phase β(Ti, Mo) alloy. In both aspects, particulate emission during sputtering is reduced. Methods of preparing the targets, methods of bonding targets together to produce large area sputter targets, and films produced by the targets, are also provided.
Abstract:
Disclosed is a process for the reprocessing or production of a sputter target or an X-ray anode wherein a gas flow forms a gas/powder mixture with a powder of a material chosen from the group consisting of niobium, tantalum, tungsten, molybdenum, titanium, zirconium, mixtures of two or more thereof and alloys thereof with at least two thereof or with other metals, the powder has a particle size of 0.5 to 150 μm, wherein a supersonic speed is imparted to the gas flow and the jet of supersonic speed is directed on to the surface of the object to be reprocessed or produced.
Abstract:
Molybdenum sputtering targets and sintering characterized as having no or minimal texture banding or through thickness gradient. The molybdenum sputtering targets having a fine, uniform grain size as well as uniform texture, are high purity and can be micro-alloyed to improved performance. The sputtering targets can be round discs, square, rectangular or tubular and can be sputtered to form thin films on substrates. By using a segment-forming method, the size of the sputtering target can be up to 6 m×5.5 m. The thin films can be used in electronic components such as Thin Film Transistor—Liquid Crystal Displays, Plasma Display Panels, Organic Light Emitting Diodes, Inorganic Light Emitting Diode Displays, Field Emitting Displays, solar cells, sensors, semiconductor devices, and gate device for CMOS (complementary metal oxide semiconductor) with tunable work functions.
Abstract:
The present invention is directed to a process for the preparation of a metal powder having a purity at least as high as the starting powder and having an oxygen content of 10 ppm or less comprising heating said metal powder containing oxygen in the form of an oxide, with the total oxygen content being from 50 to 3000 ppm, in an inert atmosphere at a pressure of from 1 bar to 10−7 to a temperature at which the oxide of the metal powder becomes thermodynamically unstable and removing the resulting oxygen via volatilization. The metal powder is preferably selected from the group consisting of tantalum, niobium, molybdenum, hafnium, zirconium, titanium, vanadium, rhenium and tungsten. The invention also relates to the powders produced by the process and the use of such powders in a cold spray process.
Abstract:
An apparatus and a method for producing single crystal semiconductor particulate in near spherical shape and the particulate product so formed is accomplished by producing uniform, monosized, near spherical droplets; identifying the position of an undercooled droplet in a nucleation zone; and seeding the identified droplet in the nucleation zone to initiate single crystal growth in the droplet.