摘要:
A method for depositing a Ru metal layer on a substrate is presented. The method includes providing a substrate in a process chamber, introducing a process gas in the process chamber in which the process gas comprises a carrier gas, a ruthenium-carbonyl precursor, and hydrogen. The method further includes depositing a Ru metal layer on the substrate by a thermal chemical vapor deposition process. In one embodiment of the invention, the ruthenium-carbonyl precursor can contain Ru3(CO)12. and the Ru metal layer can be deposited at a substrate temperature resulting in the Ru metal layer having predominantly Ru(002) crystallographic orientation.
摘要:
An object of the present invention is to ensure the stable operation of a vacuum pump for discharging an unused source gas and reaction byproduct gases from a low-pressure processing chamber, to recover the reaction byproducts efficiently for the effective utilization of resources and reduction of running costs. A low-pressure CVD system has a processing vessel (10) for carrying out a low-pressure CVD process for forming a copper film, a source gas supply unit (12) for supplying an organic copper compound as a source gas, such as Cu(I)hfacTMVS, into the processing vessel (10), and an evacuating system (14) for evacuating the processing vessel (10). The evacuating system (14) includes a vacuum pump (26), a high-temperature trapping device (28) disposed above the vacuum pump (26) with respect to the flowing direction of a gas, and a low-temperature trapping device (30) disposed below the vacuum pump with respect to the flowing direction of a gas. The high-temperature trapping device (28) decomposes the unused Cu(I)hfacTMVS contained in a gas sucked out of the processing vessel (10) to trap metallic copper. The low-temperature trapping device traps Cu(II)(hfac)2 produced as a reaction byproduct.
摘要:
WF6 is used as a source gas of tungsten, and NH3 is used as a source gas of nitrogen. The partial pressure of WF6 is set to be higher than that of NH3. The substrate temperature is set to about 400° C. to 450° C. Tungsten nitride is deposited and then heated, to form a contact plug (106).
摘要:
A film-forming unit of the invention includes a processing container in which a vacuum can be created, a stage arranged in the processing container, on which an object to be processed is placed, a process-gas supplying means for supplying a process gas into the processing container, and a heating means for heating the object to be processed placed on the stage. A division wall surrounds a lateral side and a lower side of the stage. An inert gas is introduced into a stage-side region surrounded by the division wall, by an inert-gas supplying means. A gap-forming member is arranged in such a manner that its inner peripheral portion is arranged above a peripheral portion of the object to be processed placed on the stage via a gap and its outer peripheral portion is arranged above the division wall via a gap.
摘要:
A CVD process of forming a conductive film containing Ti, Si and N includes a first step of supplying gaseous sources of Ti, Si and N simultaneously to grow a conductive film and a second step of supplying the gaseous sources of Ti, Si and N in a state that a flow rate of the gaseous source of Ti is reduced, to grow the conductive film further, wherein the first step and the second step are conducted alternately.
摘要:
In a semiconductor device manufacturing method, an interlevel insulating film is formed on a silicon substrate. A trench is formed in the interlevel insulating film. A lower underlying film made of a tungsten-based material is formed by thermal chemical vapor deposition to cover a bottom surface and side surface of the trench. An upper underlying film made of a tungsten-based material is formed by thermal chemical vapor deposition on an entire region on the lower underlying film. A copper film made of copper fills the trench. The upper underlying film is formed in accordance with thermal chemical vapor deposition by supplying a tungsten source gas and the other source gas such that the other source gas is supplied in an amount lager than that of the tungsten source gas. The lower underlying film is formed in accordance with thermal chemical vapor deposition by increasing a content of the tungsten source gas to be larger than to that of the other source gas in formation of the lower underlying film.
摘要:
The present invention provides a CVD apparatus and a CVD method for use in forming an Al/Cu multilayered film. The Al/Cu multilayered film is formed in the CVD apparatus comprising a chamber for placing a semiconductor wafer W, a susceptor for mounting the semiconductor wafer W thereon, an Al raw material supply system for introducing a gasified Al raw material into the chamber and a Cu raw material supply system for introducing a gasified Cu raw material into the chamber. The Al/Cu multilayered film is formed by repeating a series of steps consisting of introducing the Al raw material gas into the chamber, depositing the Al film on the semiconductor wafer W by a CVD method, followed by generating a plasma in the chamber in which the Cu raw material gas has been introduced and depositing the Cu film on the semiconductor wafer W by a CVD method. The Al/Cu multilayered film thus obtained is subjected to a heating treatment (annealing), thereby forming a desired Al/Cu multilayered film.
摘要:
A metal interconnection is prepared by forming an underlying metal film of high melting point metal such as Ti and/or high melting point metal compound such as TiN layers above a semiconductor substrate, plasma etching the surface of the underlying metal film in a gas atmosphere containing chloride, and forming an interconnecting metal film such as Al, Cu, Au and Ag on the underlying metal film. Alternatively, a metal interconnection is prepared by forming an insulating film above a semiconductor substrate, forming connecting holes in the insulating film, forming an underlying metal film such as TiN on the insulating film and the bottom and side wall of the connection holes by a CVD process under controlled conditions, and forming an interconnecting metal film such as Al on the underlying metal film. The TiN film has (111) preferential orientation and the aluminum film has (111) preferential orientation, smooth surface and effective coverage. The thus fabricated metal interconnection has improved reliability including electromigration immunity when used in semiconductor devices and finding advantageous use in miniaturized semiconductor devices.
摘要:
A metal interconnection is prepared by forming an underlying metal film of high melting point metal such as Ti and/or high melting point metal compound such as TiN layers above a semiconductor substrate, plasma etching the surface of the underlying metal film in a gas atmosphere containing chloride, and forming an interconnecting metal film such as Al, Cu, Au and Ag on the underlying metal film. Alternatively, a metal interconnection is prepared by forming an insulating film above a semiconductor substrate, forming connection holes in the insulating film, forming an underlying metal film such as TiN on the insulating film and the bottom and side wall of the connection holes by a CVD process under controlled conditions, and forming an interconnecting metal film such as Al on the underlying metal film. The TiN film has (111) preferential orientation and the aluminum film has (111) preferential orientation, smooth surface and effective coverage. The thus fabricated metal interconnection has improved reliability including electromigration immunity when used in semiconductor devices and finding advantageous use in miniaturized semiconductor devices.