Abstract:
A liquid crystal display device which includes a plurality of OCB liquid crystal pixels arrayed substantially in a matrix, and a driver circuit which cyclically writes a non-video signal and a video signal as a pixel voltage in each of the liquid crystal pixels. The liquid crystal display device further includes a control circuit which sets a first period and a second period different in length from the first period such that a total time length of the first period and the second period does not exceed one frame period, and controls the driver circuit to execute write of the non-video signal for the liquid crystal pixels in the first period and to execute write of the video signal for the liquid crystal pixels PX in the second period.
Abstract:
The cement clinker production system includes: a first supplying section configured to supply a sulfur source and a fluorine source of mineralizer; a second supplying device configured to supply clinker raw material; a crusher configured to crush the mixed raw material obtained by mixing the clinker raw material with the fluorine source of the mineralizer; a kiln configured to burn the crushed mixed raw material; an introducing section configured to introduce the sulfur source of the mineralizer to the kiln; a third supplying section configured to supply fuel to the kiln; and a test sample-analyzing system configured to collect each of the mixed raw material before the burning and the clinker after the burning and to measure amounts of the fluorine, main components and free lime depending on the type collected.
Abstract:
A liquid crystal display device includes an array substrate, a counter substrate and a liquid crystal layer held between the array substrate and the counter substrate. A display portion having a plurality of pixels arranged in a matrix is formed of the substrates and the liquid crystal layer. Each of the pixels includes a pixel electrode and a counter electrode arranged opposing to the pixel electrode. A driving portion is formed on the array substrate to supply a pixel voltage to the pixel electrode. A correcting circuit is formed on the array substrate to correct the voltage supplied to the pixel electrode by adding a predetermined DC voltage to the voltage supplied to the pixel electrode corresponding to gradations to be displayed in the pixel.
Abstract:
An image capturing device for generating images with precise luminance gradation regardless of variability in output levels between pixels. The image capturing device consists of an image shifting means for moving an image position on a light receiving surface, a differential calculating section for calculating the difference between output levels of the same pixels before and after image position movement, a summed level calculating section for sequentially summing the difference in output level for each pixel in pixel lines arrayed in the direction of movement of the image position to calculate the summed level of each pixel, and an image generating section for generating images based on the summed levels of each pixel.
Abstract:
There is provided a driving circuit which is simple and has a small occupied area. A shift register circuit of the present invention includes a plurality of register circuits. Each of the register circuits includes a clocked inverter circuit and an inverter circuit. Both are connected in series with each other so that an output signal of the clocked inverter circuit becomes an input signal of the inverter circuit. Further, the register circuit includes a signal line by which an output signal of the inverter circuit is transmitted. Since a number of elements are connected to the signal line and parasitic capacitance is large, it has a high load. The shift register circuit of the present invention uses the fact that since the parasitic capacitance of the signal line is large, it has a high load.
Abstract:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
Abstract:
Provided is a dehydrator that requires no excessively large apparatus structure and achieves cost-saving while maintaining suction efficiency at a desired level by use of suction means. A dehydrator 100 for separating water from a target liquid 13 includes at least two water separation membrane units 1a and 1b which are provided in series in a flow direction of the target liquid 13. The water separation membrane unit 1a on an upstream side out of the water separation membrane units 1a and 1b is connected to suction means 7 for sucking a gas phase containing water through one condenser 4, and the one condenser 4 condenses water in the gas phase and thereby separates the water. The gas phase sucked by the suction means 7 from the one condenser 4 is transferred to at least one downstream condenser 8 provided downstream of the one condenser 4, and the downstream condenser 8 condenses water in the gas phase and thereby separates the water. The water separation membrane unit 1b on a downstream side of the water separation membrane unit 1a is connected to a steam ejector 3, and the condenser 4 for condensing water in a gas phase passed through the steam ejector 3 condenses water and thereby separates the water.
Abstract:
A membrane container 6 has a casing 10 including a fluid inlet 14 and a fluid outlet 16 and a membrane container body 9 including a plurality of flow paths 11 which is arranged along the flow direction of the treated fluid and in parallel to one another. Each of the plurality of flow paths 11 includes a most upstream portion 11A which is connected to the fluid inlet 14, and a most downstream portion 11C which is connected to the fluid outlet 16. Return portions 15 and 17 configured to reverse the flow direction of the treated fluid are provided between the most upstream portion 11A and the most downstream portion 11C. After passing through the fluid inlet 14, the treated fluid flows from the most upstream portion 11A down to the most downstream portion 11C via the return portions 15 and the upper return portion 17.
Abstract:
A liquid crystal display device includes a liquid crystal display panel (LCD panel), an area light source device which illuminates the LCD panel, a driving unit which drives the LCD panel and the area light source device, and a control unit which controls the driving unit. The LCD panel includes display pixels. The area light source device includes plural kinds of light sources which are successively turned on in one frame period. The control unit includes means for controlling the driving unit in a manner to execute video signal write and reset signal write after the video signal write, in a period in which one of the plural kinds of light sources is turned on in the one frame period. The video signal write and the reset signal write are executed with the same polarity, and a polarity of potential of the display pixels is reversed between frame periods.
Abstract:
A liquid crystal display device comprises a display area including a plurality of pixels arranged in a matrix. A driving unit to drive the plurality of pixels each having a pixel switch is connected to signal lines and scan lines. An auxiliary capacitance voltage is interposed to a pixel electrode connected to the pixel switch through auxiliary capacitance lines arranged along the pixels in a row direction. The driving unit includes an auxiliary capacitance line driving circuit to supply a first voltage, a second voltage smaller than the first voltage and a third voltage smaller than the second voltage to the auxiliary capacitance lines. The voltage difference between the first voltage and the second voltage is smaller than that between the second voltage and the third voltage.