Abstract:
A system and method for conservation of battery power in a portable medical device is provided. In one example, a processor arrangement that includes a plurality of processors is implemented. At least one of these processors is configured to execute the critical functions of the medical device, while one or more other processors assume a reduced service level, thereby drawing significantly less power. According to this arrangement, the medical device conserves energy by drawing the additional electrical power needed to activate the additional processing power only when needed.
Abstract:
According to another example, a wearable medical device controller is provided. The device controller includes a memory and a processor coupled to the memory. The processor is configured to determine a correlation between a phenomenon identifiable by the wearable medical device controller and at least one response pattern associated with a patient and store, responsive to detecting the correlation, an adaptation path to address the at least one response pattern, the adaptation path specifying an adaptation of at least one characteristic of an alarm. The at least one response pattern may include a plurality of response patterns and the adaptation path may reflect adaptations made to address at least some of the plurality of response patterns.
Abstract:
A wearable treatment device includes a cardiac sensing electrode, a treatment electrode, a user interface, and a sensor. The cardiac sensing electrode detects cardiac information, and the treatment electrode applies treatment to a subject. The user interface receives quality of life information from the subject, and the sensor detects subject activity and wellness information. A controller coupled with the cardiac sensing electrode, the treatment electrode, the user interface, and the sensor receives the detected cardiac information, the quality of life information, and the detected subject activity and wellness information, and determines that treatment is to be applied to the body of the subject based upon the detected cardiac to information. The controller can adjust the treatment based on at least one of the detected subject activity and wellness information and the quality of life information.
Abstract:
An ambulatory medical device including a plurality of electrodes configured to be disposed at spaced apart positions about a patient's body, an electrode signal acquisition circuit, and a monitoring circuit. The acquisition circuit has a plurality of inputs each electrically coupled to a respective electrode of the plurality of electrodes and is configured to sense a respective signal provided by a plurality of different pairings of the plurality of electrodes. The monitoring circuit is electrically coupled to an output of the acquisition circuit and is configured to analyze the respective signal provided by each of the plurality of different pairings and to instruct the acquisition circuit to select at least one of the plurality of different pairings to monitor based on at least one of the quality of the respective signal, a phase difference between the respective signal and that of other pairings, a position of electrodes relative to the patient's body, and other criteria.
Abstract:
According to another example, a wearable medical device controller is provided. The device controller includes a memory and a processor coupled to the memory. The processor is configured to determine a correlation between a phenomenon identifiable by the wearable medical device controller and at least one response pattern associated with a patient and store, responsive to detecting the correlation, an adaptation path to address the at least one response pattern, the adaptation path specifying an adaptation of at least one characteristic of an alarm. The at least one response pattern may include a plurality of response patterns and the adaptation path may reflect adaptations made to address at least some of the plurality of response patterns.
Abstract:
According to another example, a wearable medical device controller is provided. The device controller includes a memory and a processor coupled to the memory. The processor is configured to determine a correlation between a phenomenon identifiable by the wearable medical device controller and at least one response pattern associated with a patient and store, responsive to detecting the correlation, an adaptation path to address the at least one response pattern, the adaptation path specifying an adaptation of at least one characteristic of an alarm. The at least one response pattern may include a plurality of response patterns and the adaptation path may reflect adaptations made to address at least some of the plurality of response patterns.
Abstract:
An electrode assembly that includes an electrically conductive layer, a first impedance reduction system, and a second impedance reduction system. The electrically conductive layer forms an electrode portion of the electrode assembly and a first surface to be placed adjacent a person's skin. The first impedance reduction system is configured to dispense a first amount of an electrically conductive gel onto the first surface of the electrically conductive layer in response to a first activation signal. The second impedance reduction system is configured to dispense a second amount of the electrically conductive gel onto the first surface of the electrically conductive layer in response to a second activation signal.
Abstract:
An ambulatory medical device including a plurality of sensing electrodes and one or more processors operably coupled to the plurality of sensing electrodes is provided. Each sensing electrodes is configured to be coupled eternally to a patient and to detect one or more ECG signals. The one or more processors are configured to receive at least one electrode-specific digital signal for each of the plurality of sensing electrodes, determine a noise component for each of the electrode-specific digital signals, analyze each of the noise components for each of the plurality of sensing electrodes, generate electrode matching information for each sensing electrode of the plurality of sensing electrodes based upon analysis of each of the noise components, determine one or more sensing electrode pairs based upon the electrode matching information, and monitor each of the one or more sensing electrode pairs for ECG activity of the patient.
Abstract:
A remote alarm for use with a wearable medical device. The remote alarm is configured to receive alarms, voice messages and prompts issued by the wearable medical device and to repeat those alarms, voice messages and prompts in a manner that can more easily be perceived by a patient wearing the wearable medical device or a bystander. The remote alarm can be configured to receive a communication from the wearable medical device, and in response, to identify one or more messages to be provided to the patient or a bystander. The messages may be provided audibly, visually, tactilely or combinations thereof. The remote alarm may further be configured to take certain actions depending upon the content of the communication, such as sending a telephone message to alert emergency personnel to the identity, location and medical condition of the patient, or sending an email.
Abstract:
An ambulatory medical device includes a sensor configured to acquire a signal indicative of a physiological condition of a patient, a controller operatively coupled to the sensor and configured to monitor the physiological signal, and to perform a diagnostic test, and a remote access manager operatively coupled to the controller and configured to monitor for a command from a remote system to perform the diagnostic test, and to cause the controller to perform the diagnostic test in response to the command. In the device, the remote access manager may be further configured to transmit data representing an operational status of the ambulatory medical device to the remote system. The operational status of the controller may result from performing the diagnostic test. The remote access manager may be further configured to send the data representing the operational status of the ambulatory medical device in real time or substantially in real time.