摘要:
Disclosed is a hybrid catalyst system for the production of hydrogen/carbon monoxide syngas. The hybrid catalyst system includes a dye, a rhenium (Re) catalyst, and a cobalt (Co) catalyst grafted on a semiconductor metal oxide. The hybrid catalyst system can produce syngas without the aid of external energy and enables control over the ratio of hydrogen/carbon monoxide formed. Therefore, the hybrid catalyst system can find application in various industrial fields, including chemical fuel production.
摘要:
A composite hollow particle comprising titanium dioxide and a metal ion in the shell which covers a hollow core. A method of making the composite hollow particle and a method of employing the composite hollow particle in production of hydrogen gas under visible light are provided.
摘要:
To provide a catalyst, which is formed from a perovskite oxide, for thermochemical fuel production, and a method of producing fuel using thermochemical fuel production that is capable of allowing a fuel to be produced in a thermochemical manner. Provided is a catalyst for thermochemical fuel production, which is used for producing the fuel from thermal energy by using a two-step thermochemical cycle of a first temperature and a second temperature that is equal to or lower than the first temperature, wherein the catalyst is formed from a perovskite oxide having a compositional formula of AXO3±δ (provided that, 0≦δ≦1). Here, A represents one or more of a rare-earth element (excluding Ce), an alkaline earth metal element, and an alkali metal element, X represents one or more of a transition metal element and a metalloid element, and O represents oxygen.
摘要:
The invention provides methods and systems for water dissociation with microplasma generated in microchannel plasma arrays or chips. Preferred methods and systems introduce water vapor into a microchannel plasma array. Electrical power is applied to the microchannel plasma array to create a plasma chemical reaction of the water vapor in the micorchannel plasma array. Dissociated hydrogen and/or oxygen gas is collected at an output of the microchannel plasma array. The water vapor can be entrained in a carrier gas, but is preferably introduced without carrier gas. Direct introduction of water vapor has been demonstrated to provide efficiencies at an above 60%. The use of carrier gas reduces efficiency, but still exceeds efficiencies of prior methods discussed in the background.
摘要:
The present invention relates to a catalyst for the thermochemical generation of hydrogen from water and/or the thermochemical generation of carbon monoxide from carbon dioxide comprising a solid solution of cerium dioxide and uranium dioxide.
摘要:
A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
摘要:
In some implementations, a system for producing hydrogen and oxygen from water includes a target, an oxygen selective membrane, a cooling chamber, and a hydrogen selective membrane. The target heats to at least a temperature that thermally decomposes water, receives water vapor, heats the received water vapor to the temperature that thermally decomposes water to form a heated vapor, and passes the heated vapor to an oxygen selective membrane. The oxygen selective membrane separates, at or near the temperature that thermally decomposes water, oxygen from the heated vapor to form a hydrogen-rich vapor. The cooling chamber cools the hydrogen-rich vapor to at least a specified temperature. The hydrogen selective membrane separates hydrogen in the hydrogen-rich vapor to leave substantially water vapor.
摘要:
To provide a catalyst, which is formed from a perovskite oxide, for thermochemical fuel production, and a method of producing fuel using thermochemical fuel production that is capable of allowing a fuel to be produced in a thermochemical manner. Provided is a catalyst for thermochemical fuel production, which is used for producing the fuel from thermal energy by using a two-step thermochemical cycle of a first temperature and a second temperature that is equal to or lower than the first temperature, wherein the catalyst is formed from a perovskite oxide having a compositional formula of AXO3±δ (provided that, 0≦δ≦1). Here, A represents one or more of a rare-earth element (excluding Ce), an alkaline earth metal element, and an alkali metal element, X represents one or more of a transition metal element and a metalloid element, and O represents oxygen.
摘要:
A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
摘要:
The present disclosure relates to oriented photocatalytic semiconductor surfaces which may include photocatalytic capped colloidal nanocrystals (PCCNs) positioned all in the same orientation. The photoactive material may be employed in a plurality of photocatalytic energy conversion applications such as the photocatalytic reduction of carbon dioxide and water splitting, among others. The disclosed oriented PCCNs, within the oriented photoactive material, may also exhibit different shapes and sizes, and higher efficiency in a light harvesting process. Having all the PCCNs oriented at the same angle and dipole moment may allow the light to interact with the dipole at an increased efficiency, to predict the polarity of the light or a more efficient interaction with the nanocrystals substrate, and therefore, increasing the harvesting efficiency by controlling different parts of the light spectrum in the same system.