Abstract:
Aspects of the present disclosure generally relate to catalyst compositions including metal chalcogenides, processes for producing such catalyst compositions, processes for enhancing catalytic active sites in such catalyst compositions, and uses of such catalyst compositions in, e.g., processes for producing conversion products. In an aspect, a process for forming a catalyst composition is provided. The process includes introducing an electrolyte material and an amphiphile material to a metal chalcogenide to form the catalyst composition. In another aspect, a catalyst composition is provided. The catalyst composition includes a metal chalcogenide, an electrolyte material, and an amphiphile material. Devices for hydrogen evolution reaction are also provided.
Abstract:
A chemical complex to perform oxidative dehydrogenation of C2-C4 alkanes, to C2-C4 alkenes, the chemical complex involving at least one oxidative dehydrogenation reactor containing one or more mixed metal oxide catalysts and designed to accept, optionally in the presence of a heat removal diluent gas, an oxygen containing gas and a C2-C4 alkane containing gas, and to produce a product stream including a corresponding C2-C4 alkene and one or more of: an unreacted C2-C4 alkane; oxygen; heat removal diluent gas; carbon oxides, including carbon dioxide and carbon monoxide; oxygenates, including but not limited to, one or more of acetic acid, acrylic acid and maleic acid; and water; and involving a combustion chamber for combusting a product stream and at least one fuel stream and optionally at least one stream including oxygen, the combustion chamber producing a flue gas at a temperature of 850° C. to 1500° C.
Abstract:
Disclosed herein are new mixed metal oxide catalysts suitable as heterogeneous catalysts for catalyzing the transesterification process of aromatic alcohols with a dialkyl carbonate to form aromatic carbonates. The heterogeneous catalyst comprises a combination of two, three, four, or more oxides of Mo, V, Nb, Ce, Cu, Sn, or an element selected from Group IA or Group IIA of the periodic table.
Abstract:
Oxidative dehydrogenation of paraffins to olefins provides a lower energy route to produce olefins. Oxidative dehydrogenation processes may be integrated with a number of processes in a chemical plant such as polymerization processes, manufacture of glycols, and carboxylic acids and esters. Additionally, oxidative dehydrogenation processes can be integrated with the back end separation process of a conventional steam cracker to increase capacity at reduced cost.
Abstract:
A process of growth in the thickness of at least one facet of a colloidal inorganic sheet. By sheet is meant a structure having at least one dimension, the thickness, of nanometric size and lateral dimensions great compared to the thickness, typically more than 5 times the thickness. By homostructured is meant a material of homogeneous composition in the thickness and by heterostructured is meant a material of heterogeneous composition in the thickness. The process allows the deposition of at least one monolayer of atoms on at least one inorganic colloidal sheet, this monolayer being constituted of atoms of the type of those contained or not in the sheet. Homostructured and heterostructured materials resulting from such process as well as the applications of the materials are also described.
Abstract:
Provided is a facilitated CO2 transport membrane having an improved CO2 permeance and an improved CO2/H2 selectivity. The facilitated CO2 transport membrane includes a separation-functional membrane that includes a hydrophilic polymer gel membrane containing a CO2 carrier and a CO2 hydration catalyst. Further preferably, the CO2 hydration catalyst at least has catalytic activity at a temperature of 100° C. or higher, has a melting point of 200° C. or higher, or is soluble in water.
Abstract:
Disclosed is a process for producing an oxide catalyst for use in the gas-phase catalytic oxidation reaction or the like of propane or the like, the process comprising the steps of: (I) obtaining a preparation containing compounds of Mo, V, Nb, and Sb or Te at the predetermined atomic ratios; (II) drying the preparation to obtain a dry powder; and (III) calcining the dry powder, wherein the step (III) comprises the step of calcining the dry powder in the presence of a compound containing W in the form of a solid to obtain a pre-stage calcined powder or a mainly calcined powder, or the step of calcining the dry powder and calcining the obtained pre-stage calcined powder in the presence of the solid to obtain a mainly calcined powder, the solid satisfies the predetermined conditions, and the oxide catalyst comprises a catalytic component having the predetermined composition.
Abstract:
Provided is a facilitated CO2 transport membrane having an improved CO2 permeance and an improved CO2/H2 selectivity. The facilitated CO2 transport membrane includes a separation-functional membrane that includes a hydrophilic polymer gel membrane containing a CO2 carrier and a CO2 hydration catalyst. Further preferably, the CO2 hydration catalyst at least has catalytic activity at a temperature of 100° C. or higher, has a melting point of 200° C. or higher, or is soluble in water.
Abstract:
A process for producing methyl methacrylate, the process comprising contacting reactants comprising methacrolein, methanol and an oxygen-containing gas, under reaction conditions in the presence of a solid catalyst comprising palladium, bismuth and tellurium, wherein the solid catalyst further comprises a support selected from at least one member of the group consisting of silica, and alumina, with the proviso that the process produces less than 1 mole methyl formate per mole of methyl methacrylate.
Abstract:
Described herein are catalysts for activation of an R—H bond in a R—H substrate and related catalytic matrices, compositions, methods and systems.