Abstract:
In the nanoimprint lithography, titania-doped quartz glass having an internal transmittance distribution of up to 10% at wavelength 365 nm is suited for use as nanoimprint molds.
Abstract:
Disclosed are synthetic silica glass having a low polarization-induced birefringence, process for making the glass and lithography system comprising optical element made of the glass. The silica glass has a polarization-induced birefringence measured at 633 nm of less than about 0.1 nm/cm when subjected to excimer laser pulses at about 193 nm having a fluence of about 40 μJ·cm−2·pulse−1 and a pulse length of about 25 ns for 5×109 pulses.
Abstract translation:公开了具有低偏振诱发双折射的合成石英玻璃,用于制造玻璃的方法和包含由玻璃制成的光学元件的光刻系统。 当在大约193nm处的准分子激光脉冲具有约40μJ·cm-2·pulse-1的注量和脉冲长度时,石英玻璃具有在633nm处测量的偏振诱发双折射小于约0.1nm / cm 对于5×109脉冲,约25ns。
Abstract:
The present invention provides a TiO2—SiO2 glass whose coefficient of linear thermal expansion in the range of the time of irradiation with EUV light is substantially zero when used as an optical member of an exposure tool for EUVL and which has extremely high surface smoothness. The present invention relates to a TiO2-containing silica glass having a TiO2 content of from 7.5 to 12% by mass, a temperature at which a coefficient of linear thermal expansion is 0 ppb/° C., falling within the range of from 40 to 110° C., and a standard deviation (σ) of a stress level of striae of 0.03 MPa or lower within an area of 30 mm×30 mm in at least one plane.
Abstract:
The present invention is to provide a TiO2—SiO2 glass whose coefficient of linear thermal expansion at the time of irradiating with high EUV energy light becomes substantially zero when used as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass, having a fictive temperature of 1,000° C. or lower, a OH concentration of 600 ppm or higher, a temperature at which the coefficient of linear thermal expansion becomes 0 ppb/° C. of from 40 to 110° C., and an average coefficient of linear thermal expansion in the temperature range of 20 to 100° C., of 50 ppb/° C. or lower.
Abstract:
A titania-doped quartz glass containing 3-12 wt % of titania at a titania concentration gradient less than or equal to 0.01 wt %/μm and having an apparent transmittance to 440 nm wavelength light of at least 30% at a thickness of 6.35 mm is of such homogeneity that it provides a high surface accuracy as required for EUV lithographic members, typically EUV lithographic photomask substrates.
Abstract:
For a substrate having fine convexoconcave patterns on its surface, the dimensions of the convexoconcave patterns in a vertical direction of a quartz glass substrate are controlled to be uniform with extreme accuracy and over the entire substrate surface. The quartz glass substrate is made to have a fictive temperature distribution of at most 40° C. and a halogen concentration of less than 400 ppm, and the etching rate of the surface of the quartz glass substrate is made uniform, whereby the dimensions of the convexoconcave patterns in a vertical direction of the quartz glass substrate are controlled to be uniform with good accuracy and over the entire substrate surface.
Abstract:
A silica glass containing TiO2, which has a fictive temperature of at most 1,200° C., a F concentration of at least 100 ppm and a coefficient of thermal expansion of 0±200 ppb/° C. from 0 to 100° C.A process for producing a silica glass containing TiO2, which comprises a step of forming a porous glass body on a target quartz glass particles obtained by flame hydrolysis of glass-forming materials, a step of obtaining a fluorine-containing porous glass body, a step of obtaining a fluorine-containing vitrified glass body, a step of obtaining a fluorine-containing formed glass body and a step of carrying out annealing treatment.
Abstract:
To provide an optical component of quartz glass for use in a projection lens system for immersion lithography with an operating wavelength below 250 nm, which is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should show the combination of several properties: particularly a glass structure essentially without oxygen defects, a mean content of hydroxyl groups of less than 60 wt ppm, a mean content of fluorine of less than 10 wt ppm, a mean content of chlorine of less than 1 wt ppm. A method for producing such an optical component comprises the following method steps: producing and drying an SiO2 soot body under reducing conditions and treating the dried soot body before or during vitrification with a reagent reacting with oxygen defects of the quartz glass structure.
Abstract:
The present invention relates to a quartz glass blank for an optical component for transmitting radiation of a wavelength of 15 nm and shorter, the blank consisting of highly pure quartz glass, doped with titanium and/or fluorine, which is distinguished by an extremely high homogeneity. The homogeneity relates to the following features: a) micro-inhomogeneities caused by a local variance of the TiO2 distribution (
Abstract:
An ideal quartz glass for a wafer jig for use in an environment having an etching effect is distinguished by both high purity and high resistance to dry etching. To indicate a quartz glass that substantially fulfills these requirements, it is suggested according to the invention that the quartz glass is doped with nitrogen at least in a near-surface area, has a mean content of metastable hydroxyl groups of less than 30 wt ppm and that its fictive temperature is below 1250° C. and its viscosity is at least 1013 dPa·s at a temperature of 1200° C. An economic method for producing such a quartz glass comprises the following method steps: melting an SiO2 raw material to obtain a quartz glass blank, the SiO2 raw material or the quartz glass blank being subjected to a dehydration measure, heating the SiO2 raw material or the quartz glass blank to a nitriding temperature in the range between 1050° C. and 1850° C. in an ammonia-containing atmosphere, a temperature treatment by means of which the quartz glass of the quartz glass blank is set to a fictive temperature of 1250° C. or less, and a surface treatment of the quartz glass blank with formation of the quartz glass jig.