Abstract:
A glassy metal composite material includes: a Mg-based amorphous metal matrix; and a plurality of porous metal particles dispersed in the Mg-based amorphous metal matrix. The Mg-based amorphous metal matrix penetrates into pores in the porous metal particles. The porous metal particles have a hardness less than that of the Mg-based amorphous metal matrix.
Abstract:
An alloy with a high glass forming ability characterized by containing a group of elements A with atomic radii of less than 0.145 nm of a total of 20 to 85 atm %, a group of elements B with atomic radii of 0.145 nm to less than 0.17 nm of a total of 10 to 79.7 atm %, and a group of elements C with atomic radii of 0.17 nm or more of a total of 0.3 to 15 atm %; when the elements with the greatest contents in the group of elements A, group of elements B, and group of elements C are respectively designated as the “element a”, “element b”, and “element c”, by the ratio of the content of the element a in the group of elements A (for example, Zn and/or Al), the ratio of the content of the element b in the group of elements B (for example, Mg), and the ratio of the content of the element c in the group of elements C (for example, Ca) all being 70 atm % or more; and by the liquid forming enthalpy between any two elements selected from the element a, element b, and element c being negative.
Abstract:
A method of forming a single crystal in a thin film by progressively rapidly heating (and cooling) a narrow band of amorphous material. The amorphous thin film may be of shape memory alloy such as TiNi or CuAlNi. Heating may be accomplished by a line-focused laser beam. The thin film may be formed by sputter deposition on a substrate such as silicon. The thin film crystal that is formed has non-isotropic stress/strain characteristics, and very large recoverable strain in a preferred direction. The single crystal SMA exhibits greater strain recovery; Constant force deflection; Wider transition temperature range; Very narrow loading hysteresis; and Recovery that is repeatable & complete. Single Crystal SMA is manufactured by pulling a single crystal from melt, a method similar to that used by the semiconductor industry to fabricate silicon boules. This process enables manufacture of materials that approach theoretical limits.
Abstract:
A method of forming in-situ composites of metallic alloys comprising an amorphous phase are provided. The method generally comprising the steps of transforming a molten liquid metal at least partially into a crystalline solid solution by cooling the molten liquid metal down to temperatures below a “remelting” temperature, then allowing the solid crystalline metal to remain at temperatures above the glass transition temperature and below the remelting temperature such that at least a portion of the metal remelts to form a partially amorphous phase in an undercooled liquid, and finally subsequently cooling the composite alloy to temperatures below the glass transition temperature.
Abstract:
The present invention relates to an Ag alloy film. Particularly, it is preferably used as a reflective film or semi-transmissive reflective film for an optical information recording medium having high thermal conductivity/high reflectance/high durability in the field of optical information recording media, an electromagnetic-shielding film excellent in Ag aggregation resistance, and an optical reflective film on the back of a reflection type liquid crystal display device, or the like. The Ag alloy film of the present invention comprises an Ag base alloy containing Bi and/or Sb in a total amount of 0.005 to 10% (in terms of at %). Further, the present invention relates to a sputtering target used for the deposition of such an Ag alloy film.
Abstract:
A nanometer-sized porous metallic glass and a method for manufacturing the same are provided. The porous metallic glass includes Ti (titanium) at 50.0 at % to 70.0 at %, Y (yttrium) at 0.5 at % to 10.0 at %, Al (aluminum) at 10.0 at % to 30.0 at %, Co (cobalt) at 10. at % to 30.0 at %, and impurities. Ti+Y+Al+Co+the impurities=100.0 at %.
Abstract translation:提供了一种纳米尺寸的多孔金属玻璃及其制造方法。 多孔金属玻璃包括在50.0at%至70.0at%的Ti(钛),在0.5at%至10.0at%的Y(钇),10.0at%至30.0at%的Al(铝),10 %至30.0原子%,杂质。 Ti + Y + Al + Co +杂质= 100.0原子%。
Abstract:
Provided is a Nd-based two-phase separation amorphous alloy by adding an element having a big difference in heat of mixing in a Nd-based alloy with a superior amorphous formability through an inherent characteristic of compositional elements and consideration of thermodynamics, at the time of forming amorphous phase, to thereby enable two-phase separation amorphous alloy during solidification. The Nd-based two-phase separation amorphous alloy which is represented as a general equation Nd100-a-b(TM)a(D)b wherein TM is a transition metal which is a combination of respective one selected from A-B, A-C and B-C when a group of A consists of Y, Ti, Zr, La, Pr, Gd, and Hf, a group of B consists of Fe, and Mn, and a group of C consists of Co, Ni, Cu, and Ag, wherein the content of the element group which constitutes each combination is 5 atomic weight % or greater, and the element selected from each element group is at least one, and wherein D is at least one selected from the group consisting of Al, B, Si and P, and a and b have the range of 20≦a≦80, and 5≦b≦30, respectively, in terms of atomic weight %.
Abstract translation:提供了一种Nd基二相分离非晶合金,通过在Nd基合金中通过组成元素的固有特性和热力学的考虑,在Nd基合金中添加具有大的混合热差的元素和优异的非晶形成性 形成非晶相,从而使固化期间的两相分离非晶态合金。 以通常方程式表示的基于Nd的两相分离非晶态合金(D)B(B) 其中当A组由Y,Ti,Zr,La,Pr,Gd和Hf组成时,TM是一种选自AB,AC和BC的各自的组合的过渡金属,B组由Fe组成, 和Mn,C组由Co,Ni,Cu和Ag组成,其中构成每个组合的元素基团的含量为5原子%或更大,并且每个元素基团中的元素为至少一个 ,其中D是选自Al,B,Si和P中的至少一种,a和b分别具有20 <= a <= 80和5 <= b <30的范围 原子量%。
Abstract:
A window pane has a substrate formed from glass and includes an electrical device. The electrical device includes an electrical conductor and an electrical connector. A layer of solderable metal is bonded to the connector. A layer of solder is bonded to the layer of solderable metal and the conductor, with the connector and the conductor in electrical communication through the layer of solderable metal and the layer of solder. The substrate has a first coefficient of expansion and the connector has a second coefficient of thermal expansion. A difference between the first and second coefficients of thermal expansion is equal to or less than 5×10−6/° C. for minimizing mechanical stress between the connector and the substrate due to thermal expansion of the connector and the substrate resulting from changes in temperature. The solder is comprised of less than 70 parts by weight of Sn along with a greater than 30 parts by weight of a reaction rate modifier. The reaction rate modifier increases the solderability of the solder to the conductor.
Abstract:
The present application relates to iron based glass forming alloys and their manufacture in powder, cored wire and stick electrode form to produce feedstock for a wide variety of weld overlay hardfacing application techniques. The alloys when welded form structures which are extremely hard and correspondingly extremely wear resistant. The novel approach of these alloys allow the replacement of conventional high hardness and wear resistant hardfacing alloys which are often composite materials made up of a binder and hard particles such as carbides, borides, borocarbides, nitrides, etc.