Abstract:
The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an α-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.
Abstract:
A strain aging hardening type steel sheet excellent in aging resistance, and manufacturing method thereof, said steel sheet comprises: in mass %, C: 0.0010 to 0.010%; Si: 0.005 to 1.0%; Mn: 0.08 to 1.0%; P: 0.003 to 0.10%; S: 0.0005 to 0.020%; Al: 0.010 to 0.10%; Cr: 0.005 to 0.20%; Mo: 0.005 to 0.20%; Ti: 0.002 to 0.10%; Nb: 0.002 to 0.10%; N: 0.001 to 0.005%; and a balance being composed of Fe and inevitable impurities, in which a ferrite fraction is 98% or more, an average grain diameter of ferrite is 5 to 30 μm, a minimum value of dislocation density in a portion having a ½ thickness of a sheet thickness and a minimum value of dislocation density in a surface layer portion are each 5×1012/m2 or more, and an average dislocation density falls within a range of 5×1012 to 1×1015/m2.
Abstract:
In a non-oriented electrical steel sheet, Si: not less than 1.0 mass % nor more than 3.5 mass %, Al: not less than 0.1 mass % nor more than 3.0 mass %, Ti: not less than 0.001 mass % nor more than 0.01 mass %, Bi: not less than 0.001 mass % nor more than 0.01 mass %, and so on are contained. (1) expression described below is satisfied when a Ti content (mass %) is represented as [Ti] and a Bi content (mass %) is represented as [Bi]. [Ti]≦0.8×[Bi]+0.002 (1)
Abstract:
Provided is a method for stably obtaining a non-oriented electrical steel sheet with high magnetic flux density and excellent productivity, at a low cost by casting in a continuous casting machine a slab having a chemical composition including by mass %, C: 0.0050% or less, Si: more than 3.0% and 5.0% or less, Mn: 0.10% or less, Al: 0.0010% or less, P: more than 0.040% and 0.2% or less, N: 0.0040% or less, S: 0.0003% or more and 0.0050% or less, Ca: 0.0015% or more, and total of at least one element selected from Sn and Sb: 0.01% or more and 0.1% or less, balance including Fe and incidental impurities, subjecting the slab to heating, then subjecting the slab to hot rolling to obtain a hot rolled steel sheet, then subjecting the steel sheet to hot band annealing, pickling, subsequent single cold rolling to obtain a final sheet thickness, then subjecting the steel sheet to final annealing, wherein in the hot band annealing, soaking temperature is 900° C. or higher and 1050° C. or lower, and cooling rate after soaking is 5° C./s or more.
Abstract:
A method of processing a metal alloy includes heating to a temperature in a working temperature range from a recrystallization temperature of the metal alloy to a temperature less than an incipient melting temperature of the metal alloy, and working the alloy. At least a surface region is heated to a temperature in the working temperature range. The surface region is maintained within the working temperature range for a period of time to recrystallize the surface region of the metal alloy, and the alloy is cooled so as to minimize grain growth. In embodiments including superaustenitic and austenitic stainless steel alloys, process temperatures and times are selected to avoid precipitation of deleterious intermetallic sigma-phase. A hot worked superaustenitic stainless steel alloy having equiaxed grains throughout the alloy is also disclosed.
Abstract:
The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an α-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.
Abstract:
An acetone storage tank or acetone transfer pipe comprising stainless steel in which the amount of Cr is in the range 10.5 wt % to 20 wt %; the amount of Ni is ≧9 wt %, and the amount of Mo is 2.75%≧Mo≧0 wt %, of the stainless steel.
Abstract:
A cladding material for stainless steel clad steel plate, includes, by mass %, 0.03% or less carbon, 1.5% or less silicon, 2.0% or less manganese, 0.04% or less phosphorus, 0.03% or less sulfur, 22.0% to 25.0% nickel, 21.0% to 25.0% chromium, 2.0% to 5.0% molybdenum, 0.15% to 0.25% nitrogen, and the balance being iron and incidental impurities, wherein critical pitting temperature (CPT) after normalization as determined in accordance with ASTM G48-03 Method E is 45° C. or higher, and corrosion loss at a welded zone as determined by a corrosion test in accordance with NORSOK Standard M-601 is 1.0 g/m2 or less.
Abstract translation:不锈钢复合钢板用包覆材料,以质量%计含有0.03%以下的碳,1.5%以下的硅,2.0%以下的锰,0.04%以下的磷,0.03%以下的硫,22.0%〜25.0% %镍,21.0%至25.0%铬,2.0%至5.0%钼,0.15%至0.25%氮,余量为铁和附带杂质,其中根据ASTM G48-测定的归一化后的临界点蚀温度(CPT) 方法E为45℃以上,通过根据NORSOK标准M-601的腐蚀试验确定的焊接区域的腐蚀损失为1.0g / m 2以下。
Abstract:
The present invention is directed to a stainless steel brake disc which is excellent in toughness, corrosion resistance, and wear resistance, and comprises, in % by mass, 0.030 to 0.080% of C, 0.05% to 1.0% of Si, 1.0 to 1.5% of Mn, 0.035% or less of P, 0.015% or less of S, 11.0 to 14.0% of Cr, 0.01 to 0.50% of Ni, 0.001 to 0.15% of V, less than 0.1% of Nb, 0.05% or less of Ti, 0.05% or less of Zr, 0.05% or less of Al, 0.015 to 0.060% of N, 0.0002% or more and 0.0050% or less of B, and 0.0080% or less of O, wherein an AT value of equation 1 is 0.055 to 0.090, equation 2 is satisfied, a ferrite phase fraction, in which an IQ value of an EBSD pattern is 4,000 or more, is 1% to 15%, a Charpy impact value is 50 J/cm2 or more, and hardness is 32 to 38 HRC. C+0.8(N−B) (1) PV=1.2Ti+0.8Zr+Nb+1.1Al+O≦0.1 (2)
Abstract translation:本发明涉及韧性,耐腐蚀性和耐磨性优异的不锈钢制动盘,以质量%计含有C:0.030〜0.080%,Si:0.05〜1.0%,1.0〜1.5 ,Mn:0.035%以下,S:0.015%以下,Cr:11.0〜14.0%,Ni:0.01〜0.50%,V:0.001〜0.15%,Nb:0.1%以下,0.05%以下 的Ti,0.05%以下的Zr,0.05%以下的Al,0.015〜0.060%的N,0.0002%以上且0.0050%以下的B,0.0080%以下的O,其中,式 1为0.055〜0.090,满足式2,EBSD图案的IQ值为4,000以上的铁素体相分数为1%〜15%,夏比冲击值为50J / cm 2以上, 硬度为32〜38HRC。 C + 0.8(N-B)(1)PV = 1.2Ti + 0.8Zr + Nb + 1.1Al + O≦̸ 0.1(2)
Abstract:
A steel sheet for cans containing 0.0060 to 0.01 mass % C and 0.02 to 0.12 mass % Nb and having the following characteristics: (i) an average ferrite grain size in a cross section in the rolling direction in a region from a surface layer of the steel sheet to a position ¼ of a sheet thickness away from the surface layer of the steel sheet is 7 μm to 10 μm or less, and (ii) an average ferrite grain size in a cross section in the rolling direction in a region from the position ¼ of a sheet thickness away from the surface layer of the steel sheet to a sheet thickness center portion of the steel sheet is 15 μm or less, wherein the average ferrite grain size (1) is smaller than the average ferrite grain size (2).