Abstract:
Provided are a rubber article reinforcing steel wire that is superior in bending fatigue properties to the related art and has a flat cross-sectional shape, and a rubber article using the wire. In a rubber article reinforcing steel wire 10, a major diameter and a minor diameter are substantially perpendicular to each other. Assuming that the major diameter is W, the minor diameter is T, a straight line that passes through a center of the major diameter in a width direction and is parallel to a minor diameter direction is L1, a straight line that passes through a center of the minor diameter in a width direction and is parallel to a major diameter direction is L2, an intersection point of the L1 and the L2 is a center point C, a region within a half of a distance from the center point C to a surface is a central region Rc, and a region outside the central region Rc is a surface layer region Rs, a Vickers hardness Hvc of the central region Rc is more than a Vickers hardness Hvs of the surface layer region Rs; and assuming that a Vickers hardness on the L1 in the surface layer region Rs is Hv1, and a Vickers hardness on the L2 in the surface layer region Rs is Hv2, relationships represented by Hvc−Hv1≦150, Hvc−Hv2≦150, Hv1/Hvc×100≧85.11, and Hv2/Hvc×100≧79.84 are satisfied.
Abstract:
A device, which converts a reinforcing strip from being flat to being undulating, includes a transporter that guides fingers along a closed circuit, with the fingers being able to bear against a first face of the strip; a support plate that rotates about a plate axis and that supports rollers having axes parallel to the plate axis, with the rollers being able to bear against a second face of the strip; and a synchronizer that synchronizes a rotation of the support plate and a forward motion of the transporter. The closed circuit has an intersecting portion at which the synchronizer allows the fingers and the rollers to move rotationally in a common plane perpendicular to the plate axis, with the fingers and the rollers being interposed at the intersecting portion so as to cause the strip to have undulating waves that extend in the common plane.
Abstract:
The invention is directed to materials comprising polylactic acid (PLA). In accordance with the invention, PLA material is stretched in at least the machine direction at a total stretch ratio of 1:4 or more. These materials have excellent biodegradability and find use in horticulture, in particular for tying up plants or parts thereof.
Abstract:
The present invention pertains to a UHMWPE film having a tensile strength of at least 2.0 GPa, a tensile energy to break of at least 30 J/g, an Mw of at least 500 000 gram/mole, and a Mw/Mn ratio of at most 6. The film may be manufactured via a process which comprises subjecting a starting UHMWPE with a weight average molecular weight of at least 500 000 gram/mole, an elastic shear modulus determined directly after melting at 160° C. of at most 0.9 MPa, and a Mw/Mn ratio of at most 6 to a compacting step and a stretching step under such conditions that at no point during the processing of the polymer its temperature is raised to a value above its melting point. The film may be used as starting material in any applications where high tensile strength and high energy to break are important. Suitable applications include ballistic applications, ropes, cables, nets, fabrics, and protective applications.
Abstract:
A process for producing a high strength rope comprising the step of i) providing a uniaxially oriented tape (10) comprising ultra-high molecular weight polyethylene, the tape (10) having a tensile strength of at least 0.9 GPa, and ii) simultaneously twisting and fibrillating the tape (10) into a twisted strand of fibrillated tape with a coherent network of filaments and fibrils. A rope obtainable by the process and products comprising the rope are also disclosed.
Abstract:
A rope including polyethylene elongate elements oriented in the length direction of the rope, where for at least part of the elongate elements the distance of the element to a central longitudinal rope axis varies over the length of the rope. The polyethylene elongate elements including tapes of ultra-high molecular weight polyethylene, the tapes having a width to thickness ratio of at least 10 and a polymer solvent content below 0.05 wt. %. The distance of at least part of the elements to the central longitudinal rope axis varies over the length of the rope between a longitudinal line which is at most 30% from the outside of the rope and a longitudinal line which is at most 30% from the central longitudinal axis of the rope. Such a rope shows a high strength-strength ratio (the ratio between the strength under use conditions and the fresh strength of the rope).