Abstract:
Composite reinforcer (R-2) capable of adhering directly to a diene rubber matrix, which can be used as a reinforcing element for a pneumatic tyre, comprising: one or more reinforcing thread(s) (20), for example a carbon steel cord; covering said thread, individually each thread or collectively several threads, a layer of a thermoplastic polymer composition comprising at least one thermoplastic polymer, the glass transition temperature of which is positive, an unsaturated thermoplastic styrene (TPS) elastomer, the glass transition temperature of which is negative, and a poly(p-phenylene ether) (“PPE”). Process for manufacturing such a composite reinforcer and rubber article or semi-finished product, especially a pneumatic tyre, incorporating such a composite reinforcer.
Abstract:
The invention relates to a tire having a radial carcass reinforcement, consisting of at least one layer of reinforcing elements anchored in each of the beads by an upturn around a bead wire, said carcass reinforcement upturn being reinforced by at least one layer of reinforcing elements or stiffener. According to the invention, the reinforcing elements of at least one stiffener are non-wrapped metal cords with saturated layers, having, in what is called the permeability test, a flow rate of less than 5 cm3/min and the thickness of the polymer blends separating the stiffener from the end of the carcass reinforcement upturn is strictly less than 3.5 mm.
Abstract:
In order to provide a double rustproof PC strand with superior durability and semi-permanent rustproof performance, a core wire and surrounding wires are formed of wires subjected to a wire drawing treatment and a plating treatment and formed with a plated layer, and a rustproof treatment is applied by forming a synthetic resin coat on an outer peripheral surface thereof. In order to uniformize and regulate the twisting pitch, the core wire and the surrounding wires are adjusted under the conditions of (A) Diameter of CORE: 4.42±0.05 mm, Diameter of Surrounding wire: 4.25±0.05 mm, (B) Diameter of CORE: 5.22±0.05 mm, Diameter of Surrounding wire: 5.06±0.05 mm, or (C) Diameter of CORE: 5.40±0.05 mm, Diameter of Surrounding wire: 5.25±0.05 mm, and then twisted, and the tensile strength is 1850 N/mm2 or higher.
Abstract translation:为了提供具有优异的耐久性和半永久性防锈性能的双重防锈PC绞线,芯线和周围的线由经过拉丝处理和电镀处理的电线形成,并且形成有镀层,并且防锈处理 通过在其外周面上形成合成树脂涂层来施加。 为了使捻距均匀化和调节,在(A)直径CORE为4.42±0.05mm,周围线直径为4.25±0.05mm的条件下,对芯线和周围线进行调整,(B)直径 核心:5.22±0.05mm,周围线直径:5.06±0.05mm,或(C)直径CORE:5.40±0.05mm,周围线直径:5.25±0.05mm,扭转,拉伸强度为1850 N / mm2以上。
Abstract:
Metal cord with a plurality of concentric layers, of the type rubberized in situ, i.e. a cord that is rubberized from the inside, during its actual manufacture, with a rubber known as a filling rubber, in which all or some of the gaps situated between the wires of the cord contain a thermoplastic elastomer of the unsaturated type, particularly an unsaturated thermoplastic stirene (TPS) elastomer such as an SBS, SBBS, SIS or SBIS block copolymer for example. Such a thermoplastic elastomer, used in the molten state, presents no problems of parasitic stickiness if the filling rubber overspills out of the cord following manufacture; its unsaturated and therefore (co)vulcanizable nature makes it extremely compatible with the diene rubber matrices, notably natural rubber matrices as conventionally used as calendering rubber in the metal fabrics intended for reinforcing tires.
Abstract:
A device and method for manufacturing a metal cord with three concentric layers, rubberized in situ, of M+N+P construction, wherein the method comprises the following steps which are performed in line: an assembling step by twisting N wires around a first layer to form, at a point named the “assembling point”, an intermediate cord named a “core strand” of M+N construction; downstream of the assembling point, a sheathing step in which the M+N core strand is sheathed with a rubber composition named “filling rubber” in the uncrosslinked state, an assembling step in which P wires of the first layer are twisted around the core strand thus sheathed, and a final twist-balancing step.
Abstract:
A tire having a radial carcass reinforcement, including at least one layer of reinforcing elements, said tire comprising a crown reinforcement, which is itself covered radially with a tread, said tread being joined to two beads via two sidewalls. The reinforcing elements of at least one layer of the carcass reinforcement are hybrid cords having at least two layers. At least one strand of the core of each of said hybrid cords includes textile multifilament yarns. The strands of the intermediate and/or outer layers are metallic, and at least one inner layer is sheathed with a layer including a polymeric composition such as a crosslinkable or crosslinked rubber composition.
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterised in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.
Abstract:
A rope structure comprising a core component comprising core fibers combine to form a first rope structure and a first cover component comprising first cover strands comprising first cover fibers within a first matrix material. The first cover strands are arranged around at least a portion of the core component.
Abstract:
Metal cord with three layers (C1+C2+C3) of 2+M+N construction, rubberized in situ, comprising a first layer or central layer (C1) comprised of two wires (10) of diameter d1 assembled in a helix at a pitch p1, around which central layer there are wound in a helix at a pitch p2, in a second layer (C2), M wires (11) of diameter d2, around which second layer there are wound in a helix at a pitch p3, in a third layer (C3), N wires (12) of diameter d3, the said cord being characterized in that it has the following characteristics (d1, d2, d3, p1, p2 and p3 being expressed in mm): 0.08≦d1≦0.50; 0.08≦d2≦0.50; 0.08≦d3≦0.50; 3
Abstract:
Multistrand metal cord (C-1) having two layers (Ci, Ce) of J+K construction, which can especially be used for reinforcing tires for industrial vehicles, consisting of a core comprising J strands forming an inner layer (Ci), J varying from 1 to 4, around which core are wound, in a helix, with a helix pitch PK of between 20 and 70 mm, K outer strands forming an outer layer (Ce) around said inner layer (Ci), each outer strand: comprising a cord (10) having two layers (C1, C2) of L+M construction, rubberized in situ, comprising an inner layer (C1) comprised of L wires (11) of diameter d1, L varying from 1 to 4, and an outer layer (C2) of M wires (12), M being equal to or greater than 5, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (C1); and having the following characteristics (d1, d2 and p2 being expressed in mm): 0.10