Abstract:
A method of paving a roadway that includes a first lane and a second lane adjacent the first lane includes applying, a first asphalt layer over the first lane of the roadway. The first asphalt layer includes a first side edge defining a portion of a joint between the first asphalt layer and a second asphalt layer. The method also includes smoothing the first asphalt layer on the first lane of the roadway, applying an additive on the first side edge to soften the first side edge, and applying the second asphalt layer over the second lane of the roadway. The second asphalt layer includes a second side edge abutting the first side edge such that the second side edge mixes with the first side edge. The first side edge and the second side edge form the joint between the first asphalt layer and the second asphalt layer.
Abstract:
A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine-vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. Relative orientations and attitudes between motive and working components can be determined using optical sensors and cameras. The system can also be used to guide multiple vehicles in relation to each other.
Abstract:
A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. Relative orientations and attitudes between motive and working components can be determined using optical sensors and cameras. The system can also be used to guide multiple vehicles in relation to each other.
Abstract:
The invention relates to a self-propelled construction machine, which has a chassis having front and rear wheels or running gears in the working direction, a drive device for driving the front and rear wheels or running gears, and a working device. The construction machine has an image capturing unit for capturing an image of the terrain and a display unit on which the captured image is displayed. The image data of the image capturing unit are processed in a data processing unit, which comprises an identification unit and a referencing unit. In the image displayed on the display unit, objects that are relevant to the building project, for example manhole covers, water inlets or curbs, are identified and a spatial data set containing information regarding the position of the identified objects in a reference system which is independent of the movement of the construction machine is determined from the image data of the capturing unit. The construction machine is then controlled in order to carry out translational and/or rotational movements on the terrain and/or to install a structure on the terrain or to alter the terrain on the basis of the spatial data set. As a result, the previously identified objects can be taken into account in the building project.
Abstract:
An image generating apparatus for a paving machine, which generates an output image based on input images captured by multiple image capturing parts attached to the paving machine, includes a coordinates correlating part that correlates coordinates in a space model disposed around the paving machine with coordinates in input image planes in which the input images are positioned and an output image generating part that generates the output image by correlating the values of the coordinates in the input image planes with the values of coordinates in an output image plane in which the output image is positioned, via the coordinates in the space model. The space model includes a first plane area parallel to a road surface and a second plane area that intersects the road surface. The second plane area is set at the front end of the paving machine in a traveling direction of the paving machine.
Abstract:
A grade propulsion system provided herein includes: a propel pump; a brake system; an operator control configured to receive and transmit a propel command and a Hill Mode activation; and a controller electronically coupled to the propel pump, the brake system, and the operator control, the controller configured, after activation of the Hill Mode and the propel command, to transmit a propel current to the propel pump and disengage the brake system when the propel current is equal to or greater than a cracking current plus an offset current.
Abstract:
An image generation apparatus includes a processor that generates an output image based on input images captured by multiple imaging units mounted on a paver including a hopper, a tractor, and a screed. The output image includes a hopper image representing a downward view of the hopper, a left-side surrounding image representing a downward view of a surrounding area on the left side in a movement direction of the paver, a right-side surrounding image representing a downward view of a surrounding area on the right side in the moving direction of the paver, and an illustration image of the tractor. The processor arranges the hopper image, the left-side surrounding image, the right-side surrounding image, and the illustration image such that the output image represents a downward view of the paver.
Abstract:
In a method for laying down a pavement consisting of paving material with a screed of a road paver, in which a compaction unit, particularly a tamper, pre-compacts the paving material at cyclical work cycles with selectable stroke and selectable frequency while the pavement having a selectable pavement thickness) is in the process of being laid down at a selectable paving speed, at least the stroke is automatically adjustable in response to paving parameters, such as at least the paving speed and/or the pavement thickness, along a characteristic curve or in a characteristic map. In the screed the compaction unit comprises an adjusting mechanism which is operable during the ongoing paving work for adjusting the stroke of the compaction unit.
Abstract:
A saw apparatus for sawing paving slabs has a frame mounted on a ground contacting propulsion member such that the frame may move above a slab to be cut without touching the slab. A first saw support assembly disposes a blade of a saw in cutting engagement with the slab for a transverse cut. A second saw support assembly disposes a blade of another saw in cutting engagement with the slab for a longitudinal cut. The saws are mounted on the saw assemblies and the saw assemblies are mounted on the frame and the frame is mounted on the ground contact propulsion members such that no part of said frame need contact the slab during cutting.
Abstract:
A system for controlling a cutting machine for cutting continuous sinusoidal strips in a road surface includes a rotatable cutting head, a cylinder for driving the cutting head out of and into contact with the road surface, and a controller. The controller is programmed to execute an input/output function to control the cylinder to cut a subsurface sinusoidal strip wherein the cutting drum remains in the road surface once the cutting operation begins.