Abstract:
Electrically conductive powder includes polyhedral large particles and flakey small particles. The aspect ratio of the small particles is not less than 3 and is at least 1.3 times greater than that of the large particles. The electrically conductive powder is surface treated with a fatty acid. The electrically conductive powder has good contact among the polyhedral large particles and the flakey small particles. An electrically conductive paste of the electrically conductive powder achieves excellent electrical and thermal conductivities because the particles are in contact not at points but through surfaces. The electrically conductive paste is capable of filling via-holes in a satisfactory manner.
Abstract:
A conductive paste comprising 88-94% by mass of Ag powder having an average particle size of 3 μm or less and 0.1-3% by mass of Pd powder, the total amount of the Ag powder and the Pd powder being 88.1-95% by mass. A multilayer ceramic substrate obtained by laminating and sintering pluralities of ceramic green sheets, and having conductor patterns and via-conductors inside, the via-conductors being formed in via-holes having diameters of 150 μm or less after sintering, containing Ag crystal particles having a particle size of 25 μm or more, and having a porosity of 10% or less.
Abstract:
A thermally conductive adhesive composition includes a powder of a high melting point metal or metal alloy, a powder of a low melting point metal or metal alloy, and a polymerizable fluxing polymer matrix composition having a polyepoxide polymer resin and a low-melting solid or liquid acid-anhydride and a polymer diluent or diluents with carbon carbon double bonds and/or functional hydroxyl groups. The ratio by weight of the low melting point powder to high melting point powder ranges from about 0.50 to about 0.80, and may range from about 0.64 to about 0.75, and may be 0.665. Heretofore unpredicted substantially higher thermal conductivity improvements in performance have been found using these ratios of low melting point powder to high melting point powder.
Abstract:
A fabricating method of a flat panel display device can reduce manufacturing costs of the flat panel display device. A fabricating method of a flat panel display device includes providing a conductive nanopowder thin film material having a first conductive nanopowder and a second conductive nanopowder, spreading the conductive nanopowder thin film material over a substrate, forming a conductive thin film pattern by patterning the conductive nanopowder thin film material, and forming a conductive thin film by baking the conductive thin film pattern, wherein the first conductive nanopowder is located in a middle of the conductive thin film and the second conductive nanopowder is located in an outer part of the conductive thin film.
Abstract:
A lead-free solder paste suitable for reflow soldering includes a plurality of different types of metal powder mixed with a flux. One of the metal powders is a Sn alloy powder. Another of the metal powders is selected from a Sn alloy powder, elemental Ag powder, elemental Cu powder, and elemental Sn powder. Each Sn alloy powder includes 0-8 mass % of Ag, 0-5 mass % of Cu, and at least 80 mass % of Sn. The plurality of metal powders have a composition when melted of 1-5 mass % Ag, 0.5-3 mass % Cu, and a remainder of Sn.
Abstract:
A solder paste includes a first solder powder having an alloy of at least Sn and Zn and a second solder powder having a solidus temperature lower than an eutectic or a solidus temperature of the first solder powder, the first and the second solder powders being mixed into flux. The first solder powder may include an alloy of Sn-aZn-ba (5nullanull12, 0nullbnull5) in which null is Bi or In. The second solder powder may include an alloy of Sn-cBi-dAg-enull, Sn-cBi-dZn-enull or Sn-cBi-fIn-enull (1nullcnull57, 0nulldnull5, 0nullenull5 and 0nullfnull52) in which null is Bi or In, and nullanull, nullbnull, nullcnull, nulldnull and nullenull indicate weight by percent, a mixture ratio of the first to the second solder powder being A:1 (1.5nullAnull10).
Abstract:
The invention is directed to a thermosetting electroconductive paste for forming electroconductive bumps at predetermined locations on at least one circuit layer that is laminated to an insulating layer. Upon lamination the electroconductive bumps penetrate the insulating layer forming an electrical connection to a second circuit layer. The paste comprises, based on total composition, 80 to 90 wt % electroconductive powders comprising at least a first and second electroconductive metal powder of which packing densities are in the range of 20% or less of the average density (sp. gr.) of metal for the first powder and 20 to 40% of the average density (sp. gr.) of metal for the second powder; and 10 to 20 wt % epoxy resin, curing agent, and solvent.
Abstract:
The present invention provides a conductive adhesive and a packaging structure that can keep moisture-proof reliability even when a multipurpose base metal electrode is used. A conductive adhesive according to the present invention includes first particles having a standard electrode potential that is equal to or higher than a standard electrode potential of silver, and second particles having a standard electrode potential lower than a standard electrode potential of silver. A metal compound coating having a potential higher than that of metal particles as the first particles can be formed on a surface of an electrode having a potential lower than that of the metal particles.
Abstract:
A conductive adhesive comprises main components of a conductive filler and a binder resin, and a content of the conductive filler is in a range from 20 wt % to 70 wt %. It is preferable that at least a part of the conductive filler has protrusions. A dendrite metal filler is especially preferred. When this adhesive is compressed, the resin component is squeezed out, while the conductive filler component remains inside. As a result, the concentration of the conductive filler component is raised inside, and this is useful in connecting the electrodes by scratching the surfaces of the electrodes. No solder is required in forming a conductive adhesive 3 on a substrate electrode 2 of a circuit substrate 1 and also for packaging an electronic element 4. Provided also are a package of an electronic element using the conductive adhesive with improved initial and long-term reliability, and a method of packaging the same.
Abstract:
The present invention provides a conductive adhesive and a packaging structure that can keep moisture-proof reliability even when a multipurpose base metal electrode is used. A conductive adhesive according to the present invention includes first particles having a standard electrode potential that is equal to or higher than a standard electrode potential of silver, and second particles having a standard electrode potential lower than a standard electrode potential of silver. A metal compound coating having a potential higher than that of metal particles as the first particles can be formed on a surface of an electrode having a potential lower than that of the metal particles.