摘要:
A gas purification catalyst device comprises: a substrate; and one or more catalyst layers on the substrate. Among the one or more catalyst layers, at least one catalyst layer contains both Cu-CHA-type zeolite particles and iron-supporting metal oxide particles in which iron is supported on metal oxide particles.
摘要:
A hydroprocessing catalyst has been developed. The catalyst is a unique transition metal tungsten oxy-hydroxide material. The hydroprocessing using the transition metal tungsten oxy-hydroxide material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
摘要:
A novel mixed metal molybdate useful as a hydroprocessing catalyst has been created. The hydroprocessing using the novel mixed metal molybdate material may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
摘要:
A catalyst comprising a Group IIIA metal, a Group VIII noble metal, and an optional promoter metal, on a support selected from silica, alumina, silica-alumina compositions, rare earth modified alumina, and combinations thereof, doped with iron, a Group VIB metal, a Group VB metal, or a combination thereof, offers decreased reactivation time under air soak in comparison with otherwise identical catalysts. Reducing reactivation time may, in turn, reduce costs, both in inventory and capital.
摘要:
The present disclosure relates to a method for producing a porous metal oxide powder, and more particularly, to a method for producing a porous metal oxide powder including obtaining metal oxide precipitate slurry from an aqueous metal salt solution dissolving a water-soluble metal salt in water; solvent exchanging the water by mixing a butanol solvent and the metal oxide precipitate slurry; and drying the solvent exchanged metal oxide under atmospheric pressure conditions.
摘要:
This invention relates to a method for the preparation of a hydrocarbon synthesis catalyst material, in the form of a hydrocarbon synthesis catalyst precursor and/or catalyst, preferably, a Fischer Tropsch synthesis catalyst precursor and/or catalyst. The invention also extends to the use of a catalyst precursor and/or catalyst prepared by the method according to the invention in a hydrocarbon synthesis process, preferably, a Fischer Tropsch synthesis process. According to this invention, a method for the preparation of a hydrocarbon synthesis catalyst material includes the steps of treating Fe(II) carboxylate in solution with an oxidizing agent to convert it to Fe(III) carboxylate in solution under conditions which ensure that such oxidation does not take place simultaneously with any dissolution of Fe(0); and hydrolyzing the Fe(III) carboxylate solution resulting from step (iii) and precipitating one or more Fe(III) hydrolysis products.