摘要:
A manufacturing method includes forming a fin-shaped silicon layer on a silicon substrate, forming a first insulating film around the fin-shaped silicon layer, and forming a pillar-shaped silicon layer on the fin-shaped silicon layer; forming diffusion layers in an upper portion of the pillar-shaped silicon layer, an upper portion of the fin-shaped silicon layer, and a lower portion of the pillar-shaped silicon layer; forming a gate insulating film, a polysilicon gate electrode, and a polysilicon gate wiring; forming a silicide in an upper portion of the diffusion layer in the upper portion of the fin-shaped silicon layer; depositing an interlayer insulating film, exposing the polysilicon gate electrode and the polysilicon gate wiring, etching the polysilicon gate electrode and the polysilicon gate wiring, and then depositing a metal to form a metal gate electrode and a metal gate wiring; and forming a contact.
摘要:
In a loadless 4T-SRAM constituted using vertical-type transistor SGTs, a small SRAM cell area is realized. In a static memory cell constituted using four MOS transistors, the MOS transistors are SGTs formed on a bulk substrate in which the drains, gates, and sources are arranged in the vertical direction. The gates of access transistors are shared, as a word line, among a plurality of cells adjacent to one another in the horizontal direction. One contact for the word line is formed for each group of cells, thereby realizing a CMOS-type loadless 4T-SRAM with a very small memory cell area.
摘要:
A method for producing a semiconductor device includes a step of forming a first insulating film around a fin-shaped silicon layer and forming a pillar-shaped silicon layer in an upper portion of the fin-shaped silicon layer; a step of implanting an impurity into upper portions of the pillar-shaped silicon layer and fin-shaped silicon layer and a lower portion of the pillar-shaped silicon layer to form diffusion layers; and a step of forming a polysilicon gate electrode, a polysilicon gate line, and a polysilicon gate pad. The polysilicon gate electrode and the polysilicon gate pad have a larger width than the polysilicon gate line. After these steps follow a step of depositing an interlayer insulating film, exposing and etching the polysilicon gate electrode and the polysilicon gate line, and depositing a metal layer to form a metal gate electrode and a metal gate line, and a step of forming a contact.
摘要:
A SGT production method includes a step of forming first and second fin-shaped silicon layers, forming a first insulating film, and forming first and second pillar-shaped silicon layers; a step of forming diffusion layers by implanting an impurity into upper portions of the first and second pillar-shaped silicon layers, upper portions of the first and second fin-shaped silicon layers, and lower portions of the first and second pillar-shaped silicon layers; a step of forming a gate insulating film and first and second polysilicon gate electrodes; a step of forming a silicide in upper portions of the diffusion layers formed in the upper portions of the first and second fin-shaped silicon layers; and a step of depositing an interlayer insulating film, exposing and etching the first and second polysilicon gate electrodes, then depositing a metal, and forming first and second metal gate electrodes.
摘要:
In a solid-state imaging device, N regions serving as photoelectric conversion diodes are formed on outer peripheries of P regions in upper portions of island-shaped semiconductors formed on a substrate, and P+ regions connected to a pixel selection line conductive layer are formed on top layer portions of upper ends of the island-shaped semiconductors so as to adjoin the N regions and the P regions. In the P+ regions, a first P+ region has a thickness less than a second P+ region, and the second P+ region has a thickness less than a third P+ region.
摘要:
A method for producing a semiconductor device includes a step of forming a first insulating film around a fin-shaped silicon layer and forming a pillar-shaped silicon layer in an upper portion of the fin-shaped silicon layer; a step of implanting an impurity into upper portions of the pillar-shaped silicon layer and fin-shaped silicon layer and a lower portion of the pillar-shaped silicon layer to form diffusion layers; and a step of forming a polysilicon gate electrode, a polysilicon gate line, and a polysilicon gate pad. The polysilicon gate electrode and the polysilicon gate pad have a larger width than the polysilicon gate line. After these steps follow a step of depositing an interlayer insulating film, exposing and etching the polysilicon gate electrode and the polysilicon gate line, and depositing a metal layer to form a metal gate electrode and a metal gate line, and a step of forming a contact.
摘要:
A manufacturing method includes forming a fin-shaped silicon layer on a silicon substrate, forming a first insulating film around the fin-shaped silicon layer, and forming a pillar-shaped silicon layer on the fin-shaped silicon layer; forming diffusion layers in an upper portion of the pillar-shaped silicon layer, an upper portion of the fin-shaped silicon layer, and a lower portion of the pillar-shaped silicon layer; forming a gate insulating film, a polysilicon gate electrode, and a polysilicon gate wiring; forming a silicide in an upper portion of the diffusion layer in the upper portion of the fin-shaped silicon layer; depositing an interlayer insulating film, exposing the polysilicon gate electrode and the polysilicon gate wiring, etching the polysilicon gate electrode and the polysilicon gate wiring, and then depositing a metal to form a metal gate electrode and a metal gate wiring; and forming a contact.
摘要:
A nonvolatile semiconductor memory transistor included in a nonvolatile semiconductor memory includes an island-shaped semiconductor having a source region, a channel region, and a drain region formed in this order from the substrate side, a hollow pillar-shaped floating gate arranged so as to surround the outer periphery of the channel region in such a manner that a tunnel insulating film is interposed between the floating gate and the channel region, and a hollow pillar-shaped control gate arranged so as to surround the outer periphery of the floating gate in such a manner that an inter-polysilicon insulating film is interposed between the control gate and the floating gate. The inter-polysilicon insulating film is arranged so as to be interposed between the floating gate and the upper, lower, and inner side surfaces of the control gate.
摘要:
There is provided a semiconductor device which has a CMOS inverter circuit and which can accomplish high-integration by configuring an inverter circuit with a columnar structural body. A semiconductor device includes a columnar structural body which is arranged on a substrate and which comprises a p-type silicon, an n-type silicon, and an oxide arranged between the p-type silicon and the n-type silicon and running in the vertical direction to the substrate, n-type high-concentration silicon layers arranged on and below the p-type silicon, p-type high-concentration silicon layers arrange on and below the n-type silicon, an insulator which surrounds the p-type silicon, the n-type silicon, and the oxide, and which serves as a gate insulator, and a conductive body which surrounds the insulator and which serves as a gate electrode.
摘要:
The semiconductor device includes: a columnar silicon layer on the planar silicon layer; a first n+ type silicon layer formed in a bottom area of the columnar silicon layer; a second n+ type silicon layer formed in an upper region of the columnar silicon layer; a gate insulating film formed in a perimeter of a channel region between the first and second n+ type silicon layers; a gate electrode formed in a perimeter of the gate insulating film, and having a first metal-silicon compound layer; an insulating film formed between the gate electrode and the planar silicon layer, an insulating film sidewall formed in an upper sidewall of the columnar silicon layer; a second metal-silicon compound layer formed in the planar silicon layer; and an electric contact formed on the second n+ type silicon layer.