Abstract:
The present invention provides a method of forming a passivation layer of a MOS device, and a MOS device. The method of forming a passivation layer of a MOS device includes: forming a substrate; forming a dielectric on the substrate; patterning the dielectric to expose a part of the substrate; forming a metal on the exposed part of the substrate, and the dielectric; forming a TEOS on the metal; forming a PSG on the TEOS; and forming a nitrogen silicon compound on the PSG. Therefore, the cracks problem of the passivation can be alleviated.
Abstract:
A manufacturing method of a resistive random access storage unit, includes: forming a resistance layer on a first metal layer having a flat surface; forming a passivation layer on the resistance layer; performing an etching process to obtain a plurality of basic units, a basic unit comprising a first metal layer, a resistance layer, and a passivation layer, which are laminated sequentially; depositing a insulating dielectric layer, and flattening the insulating dielectric layer; etching the insulating dielectric layer and the passivation layer to form contacting holes corresponded to the basic units; filling metal wires in the contacting holes; forming a second metal layer. According to the above method, a uniformly distributed resistance can be formed on a whole wafer.
Abstract:
A manufacturing method of a resistive random access storage unit, includes: forming a resistance layer on a first metal layer having a flat surface; forming a passivation layer on the resistance layer; performing an etching process to obtain a plurality of basic units, a basic unit comprising a first metal layer, a resistance layer, and a passivation layer, which are laminated sequentially; depositing a insulating dielectric layer, and flattening the insulating dielectric layer; etching the insulating dielectric layer and the passivation layer to form contacting holes corresponded to the basic units; filling metal wires in the contacting holes; forming a second metal layer. According to the above method, a uniformly distributed resistance can be formed on a whole wafer.
Abstract:
A high-voltage heavy-current drive circuit applied in a power factor corrector, comprising a current mirroring circuit (1), a level shift circuit (3), a high-voltage pre-modulation circuit (2), a dead time control circuit (4) and a heavy-current output stage (5); the heavy-current output stage adopts a Darlington output stage structure to increase the maximum operating frequency of the drive circuit. The stabilized breakdown voltage characteristic of a voltage stabilizing diode is utilized to ensure the drive circuit operating within a safe voltage range. Adding dead time control into the level shift circuit not only prevents the momentary heavy-current from a power supply to the ground during the level conversion process, but also reduces the static power consumption of the drive circuit.
Abstract:
An output over-voltage protection circuit for power factor correction, which includes a chip external compensation network, a chip external resistor divider network, a static over-voltage detection circuit, a dynamic over-voltage detection circuit and a compare circuit; The chip external compensation network is connected between the chip external resistor divider network and the dynamic over-voltage detection circuit, the chip external compensation network converts the dynamic over-voltage signal conversion to the dynamic current signal and conveys it to the dynamic over-voltage detection circuit, the dynamic over-voltage detection circuit detects the dynamic current signal and ultimately produces the dynamic over-voltage signal (DYOVP); The dynamic over-voltage signal (DYOVP) is inputted into the compare circuit, which converts the dynamic over-voltage signal (DYOVP) into a voltage compared with a reference voltage and outputs a over-voltage control signal (OVP), so as to achieve a dynamic over-voltage protection function.
Abstract:
A laterally diffused metal-oxide-semiconductor (LDMOS) device and a method of manufacturing the LDMOS device are disclosed. The method includes: obtaining a substrate with a drift region formed thereon, the drift region having a first conductivity type and disposed on the substrate of a second conductivity type; etching the drift region to form therein a sinking structure, the sinking structure includes at least one of an implanting groove and an implanting hole; implanting ions of the second conductivity type at the bottom of the sinking structure; forming a buried layer of the second conductivity type by causing diffusion of the ions of the second conductivity type using a thermal treatment; and filling an electrical property modification material into the sinking structure, the electrical property modification material differs from the material of the drift region.
Abstract:
The present disclosure involves a semiconductor device and a manufacturing method thereof. A second well region is inserted between first well regions of a semiconductor device to improve the breakdown voltage of the device, and at the same time, the dimension of the upper surface of the second well region in the width direction of the device's conductive channel is set to be smaller than the dimension of the lower surface of the second well region in the width direction of the device's conductive channel to increase the dimension of the upper surface of the adjacent first well region in the width direction of the device's conductive channel. That is, the path width of the current flowing through the upper surface of the drift region is increased when the device is on, and thus the device's on-resistance is reduced.
Abstract:
A forming method for a floating contact hole, and a semiconductor device. The method comprises: obtaining a substrate, and forming a tunnel oxide layer and a plurality of gates on the substrate; forming a metal silicide barrier layer; forming a self-aligned metal silicide; forming an interlayer dielectric layer; performing photoetching on the interlayer dielectric layer to obtain a photoresist pattern, the photoresist pattern comprising a small adhesive strip in the middle of the floating contact hole; and etching the floating contact hole by using the photoresist pattern as an etching mask layer.
Abstract:
A laterally diffused metal oxide semiconductor device and a preparation method thereof are disclosed. The semiconductor device includes: a substrate; a body region having a first conductivity type and formed in the substrate; a drift region, having a second conductivity type, formed in the substrate and adjacent to the body region; a field plate structure, formed on the drift region, a lower surface of an end of the field plate structure close to the body region being flush with the upper surface of the substrate, and the end of the field plate structure close to the body region also having an upwardly extending inclined surface; and a drain region, having a second conductivity type, formed in an upper layer of the drift region, and in contact with the end of the field plate structure away from the body region.
Abstract:
A preparation method for a micro-electromechanical systems (MEMS) microphone includes the steps of: providing a silicon substrate having a silicon surface; forming an enclosed cavity in the silicon substrate; forming a plurality of spaced apart acoustic holes in the silicon substrate, each acoustic hole having two openings, one of which communicating with the cavity and the other one located on the silicon surface; forming a sacrificial layer on the silicon substrate, which includes a first filling portion, a second filling portion and a shielding portion; forming a polysilicon layer on the shielding portion; forming a recess in the silicon substrate on the side away from the silicon surface; and removing the first filling portion, the second filling portion and part of the shielding portion so that the recess is brought into communication with the cavity to form a back chamber, and that the polysilicon layer, the remainder of the shielding portion and the silicon substrate together delimit a hollow chamber, the hollow chamber communicating with the opening of the plurality of acoustic holes away from the cavity, completing the MEMS microphone.